行列式AB=A 2B,求B

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:00:13
行列式AB=A 2B,求B
已知|a+b+5|+(a+2)2=0,求3a2b-[2a2b-(3ab-a2b)-4a2]-2ab的值.

∵|a+b+5|+(a+2)2=0,∴a+b+5=0,a+2=0,解得:a=-2,b=-3,∴3a2b-[2a2b-(3ab-a2b)-4a2]-2ab=3a2b-[2a2b-3ab+a2b-4a2]

已知(a+2)2+|a+b+5|=0,求3a2b-[2a2b-(2ab-a2b)-4a2]-ab的值.

∵(a+2)2+|a+b+5|=0,∴a+2=0a+b+5=0,解得a=−2b=−3,∵原式=3a2b-2a2b+2ab-a2b+4a2-ab=(3-2-1)a2b+ab+4a2=4a2+ab=a(4

已知(a-2)2+(b+1)2=0,求代数式3a2b+ab2-3a2b+5ab+ab2-4ab+

(a-2)^2+(b+1)^2=0,由于平方数都是大于等于零,则有:a-2=0b+1=0a=2,b=-13a2b+ab2-3a2b+5ab+ab2-4ab=2ab2+ab=2*2*(-1)^2-2=2

【3a2b-2ab+ab2】-【2a2b-2ab2+7ab】其中a=1,b=-2.化简求值.

(3a²b-2ab+ab²)-(2a²b-2ab²+7ab)=3a²b-2ab+ab²-2a²b+2ab²-7ab)=a

已知多项式x2+ax+b可分解为(x+8)(x 3),求式子a2b+ab2 ab的值

你的题目不完整嗬由于-3与-8是多项式x^2+ax+b=0的两个根,根据韦达定理可得a=-3+(-8)=-11b=(-3)*(-8)=24所以a^2b+ab^2=ab(a+b)=-11*24*(-35

化简求值:3a2b-2[2ab2-(2ab-a2b)+ab]+3ab2,其中(a-b)2+|ab-2|=0.

∵(a-b)2+|ab-2|=0,∴a-b=0,ab-2=0,即a-b=0,ab=2,则原式=3a2b-4ab2+4ab-2a2b-2ab+3ab2=a2b-ab2+2ab=ab(a-b)+2ab=4

若a+b=3,ab=2,则a2b+ab2=______.

a2b+ab2=ab(a+b)=2×3=6.故答案为:6.

已知a+b=-4,ab=2,求多项式4a2b+4ab2-4a-4b的值

4a2b+4ab2-4a-4b=4ab(a+b)-4(a+b)=4(a+b)(ab-1)=4×(-4)(2-1)=-16

已知ab=6,且a2b-ab2-a+b=45,求a2+b2的值

你好:因为a²b+ab²-a+b=(a-b)(ab-1)=45带入ab=6得a-b=9所以就有a²+b²=(a-b)²+2ab=81+12=93

分块矩阵求行列式0 AB 0 这个矩阵求行列式难道不是 -|A||B|

不一定a为k阶b为n阶前面还要乘以负一的K+n次方

已知a+b=3,ab=5分之2 求代数式a2b+2a2b2+ab2的值

a²b+2a²b²+ab²=ab(a+2ab+b)=2/5×(3+2×2/5)=38/25=1又13/25

若|a+2|+b2-2b+1=0,求a2b+ab2的值.

∵|a+2|+b2-2b+1=0∴|a+2|+(b-1)2=0∴a=-2,b=1∴a2b+ab2=ab(a+b)=(-2)×1×(-2+1)=2因此a2b+ab2=2

已知a+b=6,ab=4,求a2b+3a2b2+ab2的值.

原式=ab(a+3ab+b),=ab(a+b+3ab).∵a+b=6,ab=4,∴原式=4×(6+3×4)=72.

有这样一道题:“当a=2009,b=-2010时,求多项式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a

同意小明的观点.理由:7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+2010=(7a3+3a3-10a3)+(-6a3b+6a3b)+(-3a2b+3a2b)+2010=2010;

已知a+b=5,ab=3,求a2b+ab2的值.

原式=ab(a+b),当a+b=5,ab=3时,则原式=3×5=15.

已知a-b=3,ab=-1,求a2b-ab2的值.______

原式=ab(a-b)=-1×3=-3.

已知a+b=-5,ab=7,求a2b+ab2-a-b的值.

∵a+b=-5,ab=7,∴a2b+ab2-a-b=ab(a+b)-(a+b)=(ab-1)(a+b)=(7-1)(-5)=-30.

若(a+2)2+|b+1|=0,求5ab2-{2a2b-(4ab2-2a2b)}的值.

原式=5ab2-2a2b+4ab2-2a2b=9ab2-4a2b,∵(a+2)2+|b+1|=0,∴a+2=0,b+1=0,即a=-2,b=-1,则原式=-18+16=-2.

由m(a+b+c)=ma+mb+mc,可得:(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=

A、∵(a+1)(a2-a+1)=a3+1,∴(a+1)(a2+a+1)≠a3+1,故本选项错误;B、(x+3)(x2-3x+9)=x3+27,故本选项错误;C、(x+4y)(x2-4x•y+16y2