M是x2 25 y2 16=1上一点,F1F2为焦点,角F1MF2=π 6
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:42:20
(1)∵四边形ABCD是矩形,∴AM∥DN.∴∠KNM=∠1.∵∠1=70°,∴∠KNM=∠KMN=∠1=70°,∴∠MKN=40°.(2)不能.过M点作ME⊥DN,垂足为E,则ME=AD=1.∵∠K
根据抛物线的定义可知M到焦点的距离为1,则其到准线距离也为1.又∵抛物线的准线为y=-116,∴M点的纵坐标为1-116=1516.∴点M到x轴的距离为:1516.故选D.
考点:翻折变换(折叠问题);等腰三角形的判定与性质;勾股定理;矩形的性质.分析:(1)首先根据矩形的性质可得AM∥DN,再根据平行线的性质可得∠KNM=∠1,由折叠可得∠KMN=∠1,进而得到∠KNM
证明:连接DB,并延长到点H,使BH=BF,连接EH则△EBF与△EBH全等∴EF=EH=DE,∠F=∠H∴∠DEF=∠DBF∵∠DBF=90°∴∠DEF=90°∴DE⊥EF
|MF1|+|MF2|=2a这个是椭圆的第一定义就是点到两个定点距离之和是一个定值为2aMF1|*|MF2|≤(|MF1|+|MF2|)^2/4=9这个是均值不等式的变形当且仅当|MF1|=|MF2|
直线x-y+1=0可改写为y=x+1或x=y-1,所以,圆(x+1)^2+(y-4)^2=1关于直线x-y+1=0的对称曲线为圆(x-3)^2+y^2=1,其圆心为P(3,0),半径为1.设M(y^2
依椭圆参数方程,可设点P(2cosα,√2sinα).|PM|^2=(2cosα-m)^2+(√2sinα-0)^2=4(cosα)^2-4mcosα+m^2+2(sinα)^2=2(cosα)^2-
设点M的横坐标是m,由双曲线的标准方程得a=2,b=23,c=4,a2c=1,再由双曲线的定义得 3m-a2c=e,∴3m-1=2,m=52,故答案为 52.
1、BM=MC+BC=b/2+(a-b)=a-b/22、这个题干中好像没有N点,怎么算啊!求解3、MN=MC+CN=AC/2+BC/2=a/2+b/24、如果把线段改为直线,那么就要分情况讨论了!如果
由y=2x-x3,得y′=2-3x2,∴y′|x=−1=2−3×(−1)2=−1.∴曲线在点M处的切线方程是y+1=-1×(x+1).即x+y+2=0.故选:B.
1、设右焦点坐标F(c,0),c^2=a^2+b^2=4+12=16,c=4,求出M的纵坐标,3^2/4-y^2/12=1,y=±√15,欲求M点以X轴为对称轴上下对称,右焦点坐标为(4,0),|MF
设点M的坐标为(x,y),点B(m,n),则m2+n2=1.∵动点M满足AM=13MB,∴(x-3,y)=13(m-x,n-y)∴m=4x-9,n=4y,∵m2+n2=1,∴(4x-9)2+(4y)2
是(-3,-4)因为y=m²+2m+1/xm²+2m+1=(m+1)^2恒正
求轨迹方程方法很死的:设P点的坐标是(x,y),N点的坐标是(x0,y0),∵P是MN中点,∴有:2x=x0-1,2y=y0,解得:x0=2x+1,y0=2y,即N(2x+1,2y),又∵N是圆上的点
(1)∠BQM=60度.证明:BM=CN;BA=CB;∠ABM=∠BCN=60度.则⊿ABM≌ΔBCN(SAS),∠BAM=∠CBN;所以,∠BQM=∠ABQ+∠BAM=∠ABQ+∠CBN=60度.(
第一个图呢.第二个,过p向ab做垂线交ab于e.三角形pen全等于三角形abm.所以en=bm=1/3ab,ae=an-en=1/6ab=dp,pc=5/6ab,pc/dp=5:1再问:再答:设AM交
圆x²+y²=17的圆心是O(0,0),点M(1,-4)在圆上,则:OM的斜率是:k=-4切线与OM垂直,则切线的斜率是1/4得:y=(1/4)(x-1)-4化简,得:x-4y-1
有题知2a+2c=2(√2+1),b=1a²=b²+c²解得a=√2,所以椭圆方程为x²/2+y²=1
(1)∠BQM=60°.证明:在△ABM和△BCN中∠BAM=∠CBNAB=BC∠ABC=∠C=60°.∴△ABM≌△BCN.∴∠BAM=∠CBN.∴∠BQM=∠BAM+∠ABN=∠CBN+∠ABN=