m为弧ac上一点am的延长线交cd于f求证角amd=角fmc

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 03:15:38
m为弧ac上一点am的延长线交cd于f求证角amd=角fmc
如图,AB为圆O的直径,弧AC=弧CE,点M为BC上一点,且CM=AC,EM的延长线交于圆O于N连BE

1)连接CE、AE因为弧AC=弧CE所以AC=CE因为CM=AC所以AC=CE=CM所以A、M、E三点在以C为圆心,AC为半径的圆上所以圆周角∠AEM=圆心角∠ACM/2因为AB是直径所以∠ACB、∠

如图,D为AB中点,E为AC上一点,DE的延长线交BC的延长线于F,求证BF/CF=AE/EC

如图,自点C作BA的平行线交DF于G.CG‖BD,则△BDF∽△CGF,得BF/CF=BD/CG.CG‖DA,则△ADE∽△CGE,得AE/EC=AD/CG,已知AD=BD,故AE/EC=BD/CG,

如图,已知AB是圆O的直径,弦CD⊥AB,M为弧AC上一点,AM延长线交DC延长线于F点.求证:∠AMD=∠FMC.

连接AD、AC所以:∠AMD=∠ACD(同弧所对圆周角)因为CD⊥AB,AB为直径,所以AB平分CD所以AD=AC,∠ADC=∠ACD∠FMC=∠MAC+∠MCA∠MAC=∠MDC∠MCA=∠MDA∠

P为三角形ABC的中位线DE上的一点,BP交AC于N,CP交AB于M求证AN/NC+AM/MB=1

过A点作BC的平行线,延长CM和BN分别与平行线相交于H和F点,因DE是三角形ABC的中位线,则DE‖BC,且HF‖BC,D是AB的中点,E是AC的中点

已知AB是圆O的直径弦CD垂直于AB,M为弧AC上一点AM延长线交DC于F,说明角AMD=角FMC

角AMD=弧AD/2角FMC=(弧CM+弧MA)/2=弧CA/2而由CD垂直于AB知:弧AD=弧AC所以,角AMD=角FMC

如图,在等边三角形ABC中 M N分别为AB AC上的中点 点D为MN上任意一点 BD CD的延长线分别交AC AB于点

延长BE,CF交过A的BC的平行线于G,H∵GH//MN//BC,MN是中位线,易证△BDC≌△GDH,GH=BC.又AF/BF=AH/BC,AE/CE=AG/BC,两式相加:AF/BF+AE/CE=

如图,矩形ABCD中,AB=5,AD=20,M为BC上一点且BM:MC=1:2,DE⊥AM,交AM的延长线于E,求DE

BM:MC=1:2,AD=BC=20BM=20/3AM=BM^2+AB^2cos角MAB=AB/AMDE=AD*sin角DAM=AD*cos角MAB=AD*AB/AM具体自己计算一下

AM是三角形ABC中AB边上的中线,P为BC上任意一点,过点P作AM的平行线,分别交AB,AC(或其延长线)于点Q,R,

我作的图中,P在BM线段上,即Q在AB上,R在CA延长线上因为AM是△ABC中BC边长的中线所以AM=CM=1/2BC因为PR平行AM所以△BPQ相似△BAM,△ACM相似△PCR有PQ:AM=BP:

如图,△ABC中,AC>AB,在AC上取CD=AB,M为AD的中点,N是BC中点,延长NM交BA的延长线于E.求证:AM

(一)中位线:连接BD,取BD的中点为O连接OM、ON∵N是BC的中点∴ON是△BCD的中位线∴ON=1/2CD,ON∥CD∵M是AD的中点∴OM是△ABD的中位线∴OM=1/2AB,OM∥AB∵AB

已知,如图;在△ABC中,D为AB的中点,E为AC上的一点,DE延长线交BC延长线于点F,求证;BF

如图,自点C作BA的平行线交DF于G.CG‖BD,则△BDF∽△CGF,得BF/CF=BD/CG.CG‖DA,则△ADE∽△CGE,得AE/EC=AD/CG,已知AD=BD,故AE/EC=BD/CG,

如图,AB为圆O的直径,弧AC=弧CE,点M为BC上一点,且CM=AC,EM的延长线交于圆O于N连BE.

1)连接CE、AE因为弧AC=弧CE所以AC=CE因为CM=AC所以AC=CE=CM所以A、M、E三点在以C为圆心,AC为半径的圆上所以圆周角∠AEM=圆心角∠ACM/2因为AB是直径所以∠ACB、∠

如图,已知AB是圆O的直径,弦CD垂直AB,M为弧AC上一点,AM延长线交DC延长线于F点,求证角AMD=角FMC

AB为直径,DC⊥AB→弧AC=弧AD→∠AMD=∠ADC→只需证∠CMF=∠ADF→只需证△FMC∽△FDA→只需证∠MCF=∠DAF→只需证∠MCD与∠DAF互补→因为 弧DAC与弧DB

已知M是平行四边形ABCD的对角线BD上的一点,射线AM交BC于点F,交DC的延长线与点H

1、∵ABCD是平行四边形∴AD‖BCAB∥CD∴△AMD∽△FMB,△AMB∽△HMD∴AM/MF=DM/BM,MH/AM=DM/BM∴AM/MF=MH/AM即AM²=MF×MH2、∵AD

关于圆的,已知:如图,AB是圆O的直径,弦CD垂直AB于E,M为AC弧上一点,AM的延长线交DC于F,求证:角AMD=角

由四边形外角等于内对角,∠FMC=∠FDA,弧AC=弧AD,所对的角也相等∠AMD=∠CDA(即∠FDA)等价代换∠AMD=∠FMC

如图,在△ABC中,D为AC上一点,且CD=AB.M,N分别为BC,AD的中点,MN的延长线交BA的延长线于点E,求证:

证明:连接DM并延长至点F使FM=MD,连接BF,由点M,是BC,FD中点,所以BF平行且等于CD,由AB=CD,所以AB=BF即三角形ABF为等腰三角形,延长BF,EM交于点G,由点N,M分别是AD

如图,在△ABC中,D为AC上一点,且CD=AB.M、N分别为BC、AD的中点,MN的延长线交BA的延长线于点E.

延长NM到F,使MF=NM,连接CF,连接DM并延长交CF于G,连接AG.易得:CF=BN,CG=BD=AC,又DN=FG=ANAB平行CF,所以四边形ANFG为平行四边形所以:AG平行EF,所以AE

已知:在平行四边形ABCD中,E为AD上一点,EF‖AC交CD与点F,BF的延长线交AD的延长线于G

你抄错题了吧?AE可以移动,怎么会有固定的AD^2=AE·AC呢?

在△ABC中,AD为BC边上的中线,N为AD上的一点,BN=AC,BN的延长线交AC于点M,求:MA=MN

我的方法如下延长AD到E,使AD=DE,并连结BE.因为BD=DC,角BDE=角CDA,AD=DE所以三角形BDE全等于三角形CAD所以AC=BE又因为AC=BN所以BE=BN所以角BNE=角BEN又

AD为△ABC的中线,E为AD上一点,BE、CE的延长线分别交AC、AB于M、N,求证:MN//BC

题目不完整!问题是角AH?还有没说明三角形ABC是什么三角形