m个方程n个未知量的线性方程组的系数矩阵的秩等于m

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:59:42
m个方程n个未知量的线性方程组的系数矩阵的秩等于m
非其次线性方程组AX=b中未知量的个数为n,方程的个数为m,系数矩阵A的秩为r,则()

因为是非齐次线性方程组,首要问题是方程组有解非齐次线性方程组有解的充分必要条件是r(A)=r(A,b)所以(D),(C)都不对当r=m时,m>=r(A,b)>=r(A)=r=m此时方程组有解.若r=m

设n个方程,n个未知量的齐次线性方程组AX=O的系数行列式等于0,代数余子式A11不为0,该方程组的通解可取为

因为lAl=0,A11≠0,所以r(A)=n-1所以AX=0的基础解系含n-r(A)=1个向量.又因为AA*=|A|E=0所以A*的列向量都是AX=O的解所以β=(A11,A12.A1n)^T构成AX

m个方程n元未知量的线性方程组当系数矩阵的秩小于m时,a方程一定有解b方程一定无解c方程一定有无穷解d不能确定方程是否有

m个方程n元未知量的线性方程组当系数矩阵的秩小于m时,不能确定系数矩阵与增广矩阵之间秩的关系,应该选d再问:好的好的,,谢谢您再问:能不能再问您几道题啊。。。再答:好的再问:再问:第四题再问:再问:这

线性代数中齐次线性方程组中自由未知量怎么确定,各位大人给个有效的方法

把系数矩阵经初等行变换化成梯矩阵非零行的从左至右第1个不等于0的数所处的列对应的未知量是约束变量,其余未知量就是自由未知量.如A化成123450067800009非零行的首非零元是1,6,9,处在1,

含n个未知量的齐次线性方程组的系数矩阵的秩r

有个定理是:齐次线性方程组基础解系所含向量的个数等于未知量的个数减去系数矩阵的秩.所以答案为n-

设n个方程n个未知量的齐次线性方程组AX=O的系数行列式lAl=0,而a11的代数余子式A11不等于0,求方程组通解

lAl=0,a11的代数余子式A11不等于0,所以r(A)=n-1,AA*=|A|E=0这说明A*的列向量都是AX=O的解又A11不等于0β=(A11,A12.A1n)^T构成AX=O的基础解系AX=

如何用matlab解非齐次线性方程组,其中方程的个数小于未知量的个数

clearallA=[11-3-1;3-1-34;15-9-8];b=[140]'%输入矩阵A,bA;b;%输入矩阵A,b[m,n]=size(A);R=rank(A);B=[Ab];Rr=rank(

求证:设n个未知数m个方程的其次线性方程组的系数矩阵的秩为r,齐次线性方程组有非零解的充要条件是r

是的这是定理,教材上肯定有你看看教材,哪不明白来追问或直接hi我再问:我知道是定理呀!但教材上没证明!我想知道怎么证明成立!再答:那么非齐次线性方程组的结论可用不?教材中一般先讲非齐次线性方程组将非齐

对n个未知量n个方程的线性方程组,当它的系数行列式等于0时,方程组一定无解吗?求详解

一定.因为Xn=dn/d当系数行列式d=0是,该式无意义,所以无解.再问:Dn代表什么呀?再答:代表在D中用常数项代替Xn的系数所得的行列式

关于高等代数的判断题1.在实数域上存在任意正整数次的不可约实系数多项式.2.当n元线性方程组中方程的个数m小于未知量的个

1.实数域上不存在任意次不可约的,最高次不可约的是二次;有理域上存在任意次不可约多项式(利用艾森斯坦判别法)2.利用阶梯矩阵即可得有自由向量解

设非齐次线性方程组Ax=B由n个未知数n个方程组成,若R(A)=m

设非齐次线性方程组Ax=B由n个未知数n个方程组成,若R(A)=m<n,则方程组Ax=B的解得情况?一个还是无数还是~10

非齐次线性方程组AX=b中未知量的个数为n,方程个数为m,R(A)=r,则

在n>m时,映射Ax系统可以将n维空间的点映射到m维空间中的r维子空间,且是满射,在m=r时,就是到m空间的满射,因此,对于m空间中的任意点b,都存在源点.有无穷多解.在n

非齐次线性方程组AX=b中未知量的个数为n,方程个数为m,R(A)=r,则 r=m时,AX=b有解 为什么?

R(A)=r=m即方程组中方程的个数就等于系数矩阵A的秩,因此A是满秩的矩阵,所以增广矩阵R(A,b)=R(A)那么方程组当然是有解的