若随机变量X的可能值充满区间( ),那么sinx可以作为一个随机变量的概率密度.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:22:43
首先F是连续分布函数,你就当他是个连续函数,连续函数相加依然是连续函数这是显然的啊
针对补充问题:设有限区间为[a,b],连续型随机变量ε的密度函数为f(x),且由密度函数性质得f(x)在[a,b]的积分为1则E(ε)=∫x*f(x)dx>=∫af(x)dx=a,积分区间为[a,b]
用分布函数法X服从(0,1)区间上的均匀分布f(x)=1,0
-4再问:求详解,最好能给个QQ还有好多概率论问题想请教!我的QQ452475793谢谢再答:QQ550605021详解如下。随机变量X在区间(-1,+00)内取值的概率:P=1-F(-1)随机变量Y
A.[0,π/2][0,1]B.[0,π]不唯一对应C.[0,3π/2][-1,0]D.[π,3π/2][-1,0]所以选A
这两个表述的是同一个东西
1x的概率密度为f(x)=1/(0.2-0)=5,0x)25e^(-5y)dy=1/e
概率密度在区间(-无穷,+无穷)上的积分值应该为1.若在[0,π]为sinx,其它为0的话,则概率密度的积分值为2,显然不满足概率密度的要求.
概率密度函数:f(x)=1/(2π)x:[0,2π]=0其它xE(sinx)=(1/2π)∫(2π,0)sinxdx=-(1/2π)cosx|(2π,0)=0即:E(sinx)=0.
这题是先计算条件分布再得到联合分布P(Y=y|X=x)=1/xP(X=x,Y=y)=P(Y=y|X=x)*P(X=x)=(1/x)*(1/4)=1/4x再计算边缘分布P(X=x)=1/4P(Y=y)=
f(x)=1/(b-a)P{X(2a+b)/3)f(x)dx=1/3
饿……上学期概率论作业题的简化版……我做的那道作业题没有告诉X是连续型的,也可以证明这两个结论,我写一下老师讲的标准方法.①a≤X≤b,求期望E有保序性,这是个定理.所以E(a)≤E(X)≤E(b),
因为1-1的概率和(2-1)(2-2)加起来相同,所以第二种方法这样数本身就不对10种情况占比重不同如何算作分布平均的10种?假设总共16种,把他们等比重化第一行4个1-1,第二行中两个2-2,第三行
由于是等可能的所以均值=(1+2+3+...+n)*1/n=50.5计算可等N=100求和时用等差数列前N项和公式~
因为是等可能的,所以P(X=1)=P(X=2)=……=P(X=K)=PP(X=1)+P(X=2)+……+P(X=K)=1KP=1K=1/P
连续区间,把-2和1代入即可,区间为(1/2,2)
P{X=1,Y=1}=1/4;P{X=2,Y=1}=1/8;P{X=2,Y=2}=1/8;P{X=3,Y=1}=1/12;P{X=3,Y=2}=1/12;P{X=3,Y=3}=1/12;P{X=4,Y
a是均值,σ²是方差你给出的选项是依次包含的子集关系区间(a-4,a+4)范围最大,X的取值概率最大,选D呀
楼主看这个回答:问题和你的几乎一模一样,只不过多了个“连续型”的条件,但我给出的回答里卖弄并没有用这个条件,其实回答的是您提出的这个问题.
套用均匀分布的期望公式,可得EX=(2+5)/2!望楼主采纳!