若都是等差数列,且公差相等,若a1,a2,a5恰为等比数列

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:41:40
若都是等差数列,且公差相等,若a1,a2,a5恰为等比数列
在等差数列an中,若a1=25且s9=s17求此数列的公差,通项公式及前n项的和

设公差为d∵等差数列{an}的首项为25,且s9=s17∴9a1+1/2×9×8×d=17a1+1/2×17×16×d∴d=-2a1=25,d=-2∴an=a1+(n-1)d=27-2n再答:Sn=-

若等差数列{an}的公差d≠0,且a1,a3,a7成等比数列,则a1a4=(  )

设等差数列的公差为d,首项为a1,所以a3=a1+2d,a7=a1+6d.因为a1、a3、a7成等比数列,所以(a1+2d)2=a1(a1+6d),解得:a1=2d.所以a1a4=2d5d=25.故选

等比数列{an}中若a1=1,且前N项和SN构成等差数列,则等差数列{sn}的公差是?

就是Sn是等差数列若q≠1Sn=a1(1-q^n)/(1-q)则2Sn=S(n-1)+S(n+1)所以2a1(1-q^n)/(1-q)=a1[1-q^(n-1)]/(1-q)+a1[1-q^(n+1)

已知等差数列an的公差d不等于零,且a1,a3,a13成等比数列,若a1=1,

设等差数列的公差为d,a1,a3,a13成等比数列,则(a3)²=a1•a13(1+2d)²=1+12d,4d²=8d.因为公差不为0,所以d=2.从而an=

若Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列:

设公差为d由题意,S1=a1S2=2a1+dS4=4a1+6da1*(4a1+6d)=(2a1+d)^2d^2-2a1*d=0d(d-2a1)=0d不等于0所以d=2a1(1)公比q=S2/S1=(2

若等差数列{an}的公差d≠0,且a1,a3,a7成等比数列,则a2a1的值为(  )

设等差数列的公差为d,首项为a1,所以a3=a1+2d,a7=a1+6d.因为a1、a3、a7成等比数列,所以(a1+2d)2=a1(a1+6d),解得:a1=2d.所以a2a1=3d2d=32.故选

已知等差数列AN的公差是2,若a1,a3,a4成等差数列,则a2等于

a3/a1=a4/a3即为:(a1+2d)/a1=(a1+3d)/(a1+2d)因为d=2,即为a1²+,8a1+16=a1²+6a1即得a1=-8故a2=-8+2=-6

已知等差数列{an}的公差d 不等于 0 ,它的前 n项和为Sn ,若Ss = 70 ,且a2...

1.S5=5a1+10d=5(a1+2d)=70a1+2d=14a3=14a7^2=a2×a22(a3+4d)^2=(a3-d)(a3+19d)a3=14代入,整理,得d(d-4)=0d=0(已知d不

若等差数列an中,公差d>0,且a1+a3+a5= -12,a3a4a5=18 求通项公式

a1+a3+a5=-12,即3a3=-12,a3=-4a3a4a5=18,得a4a5=-9/2,即(a3+d)(a3+2d)=-9/2(-4+d)(-4+2d)=-9/216-12d+2d^2=-9/

设正项数列{an}前n项和是sn,若{an},{根号下sn}都是等差数列,且等差相等,则a1等于?

{an},{√sn}都是等差数列,∴2√S2=√S1+√S3,即2√(2a1+d)=√a1+√(3a1+3d),平方得4(2a1+d)=a1+3a1+3d+2√[a1(3a1+3d)],4a1+d=2

等差数列{an}中,若公差d≠0,且a2、a3、a6成等比数列,则公比q等于(  )

因为a2、a3、a6成等比数列,所以a32=a2•a6⇒(a1+2d)2=(a1+d)(a1+5d)⇒2a1d+d2=0.∵d≠0,∴d=-2a1.∴q=a3a2=a1+2da1+d=3.故选C.

若等差数列{an}的首项为a1,公差为d,前n项的和为Sn,则数列(Sn/n)为等差数列,且通项

Tn=b1*b2*b3*……*bn=b1*(b1*q)*(b1*q^2)*……*[b1*q^(n-1)]=(b1)^n*q^[1+2+……+(n-1)]=(b1)^n*q^[n(n-1)/2]={b1

若一个等差数列首项为0,公差为2

0,2,4,6a1=0a20=a1+19d=0+19x2=38Sn=20x(a1+a20)/2=10x(0+38)=380

已知数列{a}是公差不为零的等差数列,若a1=1,且a1a2a3成等比数列an=

a1a2a3成等比数列a2^2=a1a3=a3(a1+d)^2=a1+2da1^2+2a1d+d^2=a1+2d1+2d+d^2=1+2dd^2=0d=0公差不为零的等差数列错题

已知等差数列{an}的公差和等比数列{bn}的公比都是d,又知d≠1,且……

设:a1=b1=a,则:a4=a+3d、b4=ad³,得:a+3d=ad³,则:3d=a(d³-1)-----------------------------(1)同理,

已知等差数列{an}的公差与等比数列{bn}的公比相等,且都等于d(d>0,且d≠1),又知a1=

a3=3b3a1+2d=3a1d²(3d²-1)a1=2da1=2d/(3d²-1)a5=5b5a1+4d=5a1d⁴(5d⁴-1)a1=4da1

若等差数列an的公差d

再问:太给力了,你的回答完美解决了我的问题!

等差数列an的公差和等比数列bn的公比相等,且都等于d(d>0)d不等于0,若a1=b1,a3=5b3,a5=5b5求a

设an=a1+(n-1)d,bn=b1d^(n-1)=a1d^(n-1)a3=a1+2d,b3=a1d^2a5=a1+4d,b5=a1d^4a1+2d=5a1d^2a1+4d=5a1d^4d^2=1+