若等差数列an的前n项和记作sn,等差数列bn的前n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:04:28
S6=a1*6+6(6-1)/2*d=36,则2a1+5d=12.&最后六项的和S=an*6-6(6-1)/2*d=6an-15dS(n-6)=Sn-S=324-(6an-15d)=144,则2an-
通项an=19+(n-1)*(-2)=21-2nSn=(a1+an)n/2=(19+21-2n)n/2=-n²+20n
答案为ASn=((a1+an)/2)*nan=a1+(n-1)d根据上式得出:Sn=(2a1+(n-1)d)*n/2=a1*n+n方*d/2-n*d/2limSn/n方=lim(2a1*n+n方*d-
若q=1,则S(n+1)=n+1,Sn=n,S(n+2)=n+2,此时S(n+1),Sn,S(n+2)不成等差数列所以q≠1,则Sn=a1*(1-q^n)/(1-q)a1*[1-q^(n+1)]/(1
a(n)=aq^(n-1),n=1,2,...若q=1.则s(n)=na,n=1,2,...s(n+1)+s(n+2)-2s(n)=(n+1)a+(n+2)a-2na=3a不等于0,矛盾.因此,q不为
在等差数列中,∵SmSn=m2n2,∴aman=2am2an=a1+a2m−1a1+a2n−1=a1+a2m−12a1+a2n−12=a1+a2m−12×(2m−1)a1+a2n−12×(2n−1)×
由题意可得a1b1=S1T1=524=13,故a1=13b1.设等差数列{an}和{bn}的公差分别为d1 和d2,由S2T2=a1+a1+d 1b1+b1 +d&nbs
因为a1=S1=(a1+12)2,所以 a1=1.设公差为d,则有a1+a2=2+d=S2=(2+d2)2.解得d=2或d=-2(舍).所以an=2n-1,Sn=n2.所以 bn=
等差数列an的前n项和根据求和公式sn=n*(a1+an)/2s7=7*(a1+a7)/2=42,所以a1+a7=12sn-7=(n-7)*(a1+an-7)/2=104,所以(n-7)*(a1+an
是S(n-6)吧?不然岂不是会出现S(负数)的情形?因为n显然是大于6的因为S6=36所以a1+a2+a3+a4+a5+a6=36.(1)因为S(n-6)=144所以后6项的和是Sn-S(n-6)=3
∵SnTn=2n3n+1,∴anbn=a1+a2n−1b1+b2n−1=S2n−1T2n−1=2(2n−1)3(2n−1)+1=2n−13n−1∴limn→∞anbn=limn→∞2n−13n−1=l
1.通项:an=19+(n-1)*(-2)=21-2nSn=(a1+an)n/2=(19+21-2n)n/2=-n²+20n2.bn-an=3^(n-1)bn=21-2n+3^(n-1){b
证明:设等差数列{an}的首项为a1,公差为d,则Sn=na1+n(n−1)d2.bn=Snn=a1+n−12d.则bn+1−bn=a1+n2d−a1−n−12d=d2.∴数列{bn}是等差数列.
由等差数列的通项公式可得a2+a5+a17+a22b8+b10+b12+b16=2(2a1+21d)2(2b1+21d′)=a1+a22b1+b22=22(a1+a22)222(b1+b22)2=S2
∵等差数列{an}{bn}的前n项和分别为Sn,Tn,∵SnTn=7nn+3,∴a5b5=s9T9=7×99+3=6312=214,故答案为:214
Sn=n(a1+an)/2Tn=n(b1+bn)/2Sn/Tn=(a1+an)/(b1+bn)=2n-3/4n-3⑴:a2000=1/2(a1+a3999)b2000=1/2(b1+b3999)所以,
∵SnTn=7n+3n+3∴a8b8=2a82b8=a1+a15b1+b15=152(a1+a15)152(b1+b15)=S15T15=7×15+315+3=6故答案为:6
由题意可得S14T14=14(a1+a14)214(b1+b14)2=2a72b7=a7b7=3×14+24×14−5=4451,故答案为:4451.
由S(n+1)/S(n)=(4n+2)/(n+1),可得a(n+1)/S(n)=S(n+1)/S(n)-1=(3n+1)/(n+1),所以S(n)=(n+1)/(3n+1)*a(n+1)以n-1代替n
a1=-11,a4+a6=-62a5=-6a5=-3a5=a1+4d4d=-3+11=8d=2所以(1)an=a1+(n-1)d=-11+2(n-1)=2n-13(2)sn=(a1+an)×n/2=(