若点e为正方形abcd外一点,角bec=45度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:46:14
若点e为正方形abcd外一点,角bec=45度
如图所示,点E为正方形ABCD内部的一点,且△ABE为等边三角形,试求∠ADE的度数.

∠ADE=75°∵△ABE为等边三角形∴∠EAB=60°又∵DAB=90°∴∠DAE=∠DAB-∠EAB=90°-60°=30°又∵三角形EAB是以正方形的一边画出的等边三角形∴此三角形的三边长与正方

如图,已知正方形ABCD中,E为BC上一点,将正方形折叠起来,使点A和点E重合,折痕为MN,若tan∠AEN=3分之1,

设BE=x,则AB=3x,CE=2x,CD=3x,∵CE+CD=10,即2x+3x=10,x=2,即BE=2,AB=6,设BN=k,则AN=NE=6-k,由勾股定理得:(6-k)²=k&su

已知点P为正方形ABCD外一点,PD⊥平面ABCD,PD=DC,E为PC中点,作EF⊥PB交PB于F

8.(I)证明:连结AC,AC交BD于O,连结EO.∵底面ABCD是正方形,∴点O是AC的中点在中,EO是中位线,∴PA//EO而平面EDB且平面EDB,所以,PA//平面EDB(II)证明:∵PD⊥

如图 abcd为正方形 e为bc上一点 将正方形折叠 使a点与e点重合,折痕为mn,若tan角ae

∵A点与E点重合,折痕为MN.∴∠NAE=∠NEA,BE=AB×tan∠NAE=AB/3DC+CE=10=(5/3)AB.AB=6.AN/AG=AE/AB.得到AN=10/3⑴三角形ANE的面积=AN

如图所示,点E是正方形ABCD内一点.

这个问题已经有很多的现成回答了啊,提示:将△CBE绕B点旋转90°,得△BE'A,连接EE'       135°

如图,P是边长为a的正方形所在平面ABCD外一点,PA⊥平面ABCD,且PA=AB,E为AB上的点,是否存在点E

设点E在点B上,先求二面角B-PC-D的大小作BH垂直于PC,H为垂足,连接DH,角DHB为所求的二面角的平面角在△PBC中,BC=1,PB=V2,PC=V3,这是一个直角△,所以BH*V3=V2*1

如图所示,四边形ABCD是正方形,E为BC上一点,将正方形折叠使A点与E点重合折痕为MN,若连接AE、EN,则有tan∠

∵AE两点关于直线MN对称∴NA=NE∴∠AEN=∠EAN∴tan∠AEN=tan∠EAN=1:3∵∠B=90°∴tan∠EAN=EB:AB=1:3∴设BE=x,则AB=3x(x>0)∵AB=BC=D

四边形ABCD是正方形,E为BC上一点,将正方形折叠,使A点与E点重合,折痕为MN若tan角AEN=1/3,DC+CE=

我已经六年没学数学了,有些知识忘记了.tan是对边与另一直角边的比值吗?如果是,那吗我的答案就没有错误.(1)因为tan角AEN=1/3,所以BE/AB=1/3.所以AB=3BE因为CE=BC-BE=

如图正方形ABCD中 ab=根号下2 点F为正方形ABCD外一点 点E在BF上 且四边形AEFC是菱形求菱形AEFC面积

【解】延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥A

如图正方形ABCD中,AB=根号2,点F为正方形ABCD外一点,点E在BF上,且四边形AEFC为菱形

延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B

已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥B

解题思路:利用正方形的性质和旋转的性质求证。解题过程:过程请见附件。最终答案:略

已知正方形ABCD中,E为对角线BD上一点,过E点做EF⊥B

解题思路:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证

已知正方形abcd中,e为bc上一点,将正方形折叠起来,使点a和点e重合,折痕为mn,若tan∠AEN=1/3,DC+C

做一个正方形ABCD过点A作直线AE交线段BC于点E(尽量是BE比AB比值为3)折痕点N交AB并AE交NM于点F设边长为3a易知∠AEN=∠NAE则BE=tan∠AEN*AB=1/3*3a=a可得EC

初二三角函数题如图ABCD为正方形,E为BC上一点,将正方形折叠,使A点与E点折痕为MN,若tan∠AEN=1/3,DC

∵AE垂直平分MN∴AN=EN∴∠AEN=∠EAN而tan∠AEN=1/3∴EB/AB=1/3而ABCD为正方形∴DC:CE==DC:(BC-BE)=3:2而DC+CE=10∴DC=6,CE=4,BE

已知,正方形ABCD中,点E为AD边上一点,CE交对角线BD于点P,PE=AE

证明:(1)连AC,AP,AD=CD∠ADP=∠CDP=45°DP=DP⇒△ADP≅△CDP⇒PA=PC⇒∠PAC=∠PCAEA=PE⇒∠E