若点d与圆心o重合,ac等于2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:57:43
若点d与圆心o重合,ac等于2
如图,AB是圆心o的直径,BC切圆o于点B,AC交圆o于点D.若AD=3,DC=2,求圆o的半径

连接BD,则∠BD=90°(半圆上的圆周角是直角)又:BC切圆于B,∴∠ABC=90°∴BD是直角三角形ABC斜边上的高∴BD^2=AD*DC=3*2=6AB^2=AD^2+BD^2=3^2+6=15

在三角形ABC中,点D在线段BC的延长线上且向量BC等于向量CD,点O在线段CD上(与点c.D不重合)若向量AO等于X向

设BO=tBC,则1再问:����t��ȡֵ��Χ����ô������再答:���o��CD�ϣ��Բ����Ұ�t�ķ�Χ����ˣ�Ӧ����1��t��2�����Ӧ��Ϊ-1��x��0

如图,在△ABC中,∠C=90°,AC+BC=9,点O是斜边AB上一点,以O为圆心2为半径的圆分别与AC、BC相切于点D

(1)连接OD、OE,∵⊙O切BC于E,切AC于D,∠C=90°,∴∠ADO=∠BEO=90°,∠ODC=∠C=∠OEC=90°,∵OE=OD=2,∴四边形CDOE是正方形,∴CE=CD=OD=OE=

已知,Rt△ABC中,∠C=90°,AC=4,BC=3.以AC上一点O为圆心的⊙O与BC相切于点C,与AC相交于点D.

(1)连接OE,因为⊙O与AB相切于点E,所以OE⊥AB,设OE=x,则CO=x,AO=4-x,∵⊙O与AB相切于点E,∴∠AEO=90°,∵∠A=∠A,∠AEO=∠ACB=90°,∴Rt△AOE∽R

在三角形ABC中,角B等于90度,哦位AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点的,AD等于2,

c等于cd这个是基本常识切线与半径交直角也是基本常识设cd为lae加半径和的平方等于2的ad的平方加半径的平方这个可以算出半径ae加2r的和的平方加l的平方等于ad加l的和的平方两方方程式凑起来应该能

三角形ABC,AC=BC=6,角C等于90度,O是AB的中点,圆心O与AB,BC分别相切于点D与E,点F是圆心O与AB的

做辅助线连接OD,且O为AB中点得OD=1/2BC=3,三角形ODF为等腰三角形.DB=31、因为三家性ABC为等腰直角三角形,且AC切圆O于D.于是OD与AC垂直.所以OD//BC2、由OD//BC

已知圆心o的半径为5,锐角三角形abc内接圆o,bd垂直ac于点d,ab=8,则tan∠cbd等于

连接AO延长交圆o于E点.因为AE为直径所以∠ABE为直角.又因为∠C=∠E∠CBD=∠EAB.tan∠CBD=tan∠EAB=BE/AB=6/8=3/4

在三角形ABC中,角C等于90°,AC=3,BC=4,O为BC边上一点,以O为圆心OB为半径做半圆,与AB边交于点D,过

连OE1)三角形BDE为直角三角形(OB、OD、OE相等,角BDE为直角)三角形BDE与三角形ACB相似,DE/AC=BD/AB所以DE=9/5(2)角FED=角OEB=角OBE角FED+角AEF=9

在三角形ABC中,角C等于90度,AC=8,AB=10,点P在AC上,AP=2若圆心在线段PB上,且圆O与AB、AC都相

AC=8,AB=10,∠C=90º⊿ABC为3,4,5直角三角形,BC=6又AP=2PC=6PCB为直角等腰三角形PB=6√2圆O与AB、AC都相切O点到AC和到AB的距离相等,过P作PD⊥

如图,已知点O为Rt三角形ABC斜边AC上一点,以O为圆心,OA长为半径的圆O与BC相切于点E,与AC相交于点D,连接A

(1)在三角形AOE中,因为OA=OE,所以角OAE=角OEA,因为BC与圆O相切,所以OE垂直于BC,则角BAE=角OEA,所以角BAE=角OAE,则AE平分角CAB(2)没图,角1在哪

如图,在Rt三角形abc中,角c等于90度,点o在ab上,以o为圆心,oa长为半径的园与ac,ab分别交于d.e,且角c

连接OD、DE有AD⊥DEDE‖BC且有角OAD=ODA已知角OAD=CBD则有OAD=ODA=CBD=EDB而角ODE=OED且OAD+OED=90度因此有ODE+EDB=90度OD垂直BDBD为圆

如图,在三角形abc中,角b等于90°,o是ab上一点,以o为圆心,ob为半径的圆与ab交于点e,与ac切于点d,ad等

连接do,则do⊥ad在Rt△aod中,设eo=od=x则ao=1+x∴2²+x²=(1+x)²解得:x=3/2同理:设cb=cd=y则在Rt△abc中,ab=1+3/2

如图所示,∠ABC=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,AD=2,AE=1

切割线定理:AD²=AE·AB∴AB=4∴BE=3∴⊙O的半径为R=3/2连结OD,则OD⊥AC∵AB⊥BC∴Rt△AOD∽Rt△ACB∴AD/AB=OD/BC∴BC=3勾股定理:AB

在Rt△ABC中,∠ABC=900,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,且AD=2

(1)⊙O的直径的长;AD^2=AE*AB,AB=4.⊙O的直径BE=AB-AE=3.(2)求BC的长;△ADO∽△ABC,OD/AD=BC/AB,BC=3.(3)求sin∠DBA的值△ADE∽△AB

如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A,与大圆相交于点B,小圆的切线AC与大圆相交于点D,

做OE⊥BC于E,由OC是角平分线,故OA=OE,易知E点为切点.AC=CE=6,BE=4.OE^2+4^2=(8-OE)^2.OE=3.OB=5.圆环面积=25π-9π=16π.

三角形ABC的顶点A,B在圆心O上,圆心O的半径为R,圆心O与AC交与点D,如果点D既是弧AB的中点,又是AC边的中点.

A,B在圆心O上,D是弧AB的中点推得角aod=90°A,B在圆心O上,又d是ac的中点,推得ao=boad=bd所以ad‖bc推得角abc=角aod=90°即△abc为直角三角形

如图,⊙P与⊙O相交于A、B两点,⊙P经过圆心O,点C是⊙P的优弧AB上任意一点(不与点A、B重合),连接AB、AC、B

:(1)∵OA^=OB^,∴∠ACO=∠BCO;(2)连接OP,AO,并延长与⊙P交于点D若点C在点D位置时,直线CA与⊙O相切理由:连接AD,OA,则∠DAO=90°∴OA⊥DA∴DA与与⊙O相切即

将矩形纸片ABCD折叠,使点B与点D都与对角线AC的中点O重合,得到菱形AECF,若AB=3,则BC的长为

选D.根号3∵AC=2BC,∠B=90°,∴AC2=AB2+BC2,∴(2BC)2=32+BC2,∴BC=根号3故选D.

如图,⊙P与⊙O相交于A、B两点,⊙P经过圆心O,点C是⊙P的优弧上AB任意一点(不与点A、B重合),连接AB、AC、B

(1)连接OA,OB.在⊙O中,∵OA=OB,∴OA=OB,∴∠ACO=∠BCO;(2)连接OP,并延长与⊙P交于点D.若点C在点D位置时,直线CA与⊙O相切理由:连接AD,OA,则∠DAO=90°∴