若正项级数收敛 证明a1 a2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:45:04
级数的一致收敛用魏尔斯特拉斯判别法证明.级数的绝对收敛即判断级数每项加绝对值号形成的正项级数的敛散性,可根据比较判别法,比值判别法,根值判别法等进行证明.
这个级数一般不采用柯西准则,用比值判别法合适:由 lim(n→∞){[10^(n+1)]/[(n+1)!]}/(10^n/n!)=lim(n→∞)[10/(n+1)]=0根据比值判别法得知该级数
这个需用Cauchy收敛准则来证明:对任意的epsilon>0,取N=[1/epsilon]+1,则对任意n>N及任意的正整数p,有 |∑(1≤k≤p)[1/(n+k)²]| ≤∑(1
因为n!
证明如图
单调有界准则进行证明.(1-an/an+1)-(1-an+1/an+2)
我来上个图.再答:再问:原来是用基本不等式,谢谢!再答:不客气
交错项级数判断敛散性,用莱布尼兹判别法:令1/√n=x显然e^x-1-x求导后可以看出它是根据x的增大而增大,由于同增异减,当n增大时,x减小,故里面也在减小,且极限为0满足莱布尼兹定理,所以原级数收
若为两个正项级数:设两个收敛级数S1,S2.因为收敛必存在N,使得n>N时,S1n
再问:万分感谢再答:不客气,我也正在学,练练手
加绝对值,得级数Σ2^n/(n*3^n)设un=2^n/(n*3^n)un开n次方后取极限,得极限=2/3
这是错的.比如Un=1/n
级数1/(n^2)是收敛的而(n+3)/(n^3)=n/(n^3)+3/(n^3)=1/(n^2)+3/(n^3)把上面级数分成两项:1/(n^2)和3/(n^3),那么1/(n^2)是收敛的,而3/
由正项级数的比较判别法可知题中级数收敛再问:可不可以采用阿贝尔定理活狄利克莱定理??