若正项数列an收敛则an的平方收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 12:12:03
若正项数列an收敛则an的平方收敛
数列{an}满足a1=1/2,a1+a2+……+an=n的平方×an,则数列{an}的通项公式?

Sn=n^2*anSn-1=(n-1)^2*an-1Sn-Sn-1=an=n^2*an-(n-1)^2*an-1an(n^2-1)=an-1*(n-1)^2an-1/an=(n+1)/(n-1)a1/

数列{an}的每个子列都含有一个以a为极限的收敛子列,证明数列{an}收敛于a.请给出过程,谢谢.

反证法.若{an}不以a为极限,则取ε=1,对任意的N,存在n0>N,使得|an0-a|>1,取N=1,得n1使得|an1-a|>1;取N=n1,得n2>n1,使得|an2-a|>1;.取N=nk,得

命题“在常数A的任一邻域内都有数列an的无穷多个点,则数列an一定收敛于A”为什么不对?

构造无穷数列01020304.显然它是一个无界数列,极限不存在.但是在常数0附近显然有无穷多个点

怎么证明{an}收敛于a的充要条件是:{an-a}为无穷小数列

(1)liman=alim(an-a)=0∴an-a是无穷小数列必要性得证再答:(2)an-a是无穷小数列lim(an-a)=0liman=a充分性得证

级数an的平方收敛,an>0,求证级数an除以n收敛

这个题很经典的,用基本不等式就可以做.省去下标∑an/n=∑(1/n)*a_n

设数列{nan}收敛,且级数∑an收敛,证明级数∑n(an-an-1)也收敛

先从1到N求和:∑n(an-an-1)=NaN-∑an-1这里求和都是从1开始到N再令N趋于无穷,前面的收敛,后面部分也收敛所以整体收敛

证明:若单调数列an含有一个收敛子列,则an收敛.

不妨设这个数单增,即a1=ank>ak所以数列ak是一个单增有上界的数列,所以收敛.进一步还可以说明ak→

请举一个正项数列{an} lim an=0,但是(-1)^n*an的求和级数不收敛

a(2n)=1/2^na(2n+1)=1/n这样级数的正部收敛,而负部发散,所以级数发散.(用这种方法可以构造出很多例子)说明交错级数的判别条件还是很重要的.

高数证明题!若数列{nan}有界.证明级数(an的平方)收敛!

nan《M,则an《m/n,(an)^2《m^2/n^2,而级数1/n^2收敛,故由大M判别法知原级数收敛.你懂得?

应用柯西收敛准则证明数列{an}收敛,

根据柯西收敛准则,只需证明|a(n+p)-an|

若数列{An}满足An+1=An^2,则称数列{An}为“平方递推数列”,已知数列{an}中,a1=9,点(an,an+

x=anf(x)=a(n+1)代入函数方程a(n+1)=an^2+2ana(n+1)+1=an^2+2an+1=(an+1)^2满足平方递推数列定义,因此数列{an+1}是平方递推数列.a1+1=10

怎么证明 若数列An收敛于a,则数列|An|收敛于|a|

再问:可以告诉我图片在哪找的吗?|An|-a=|An-a||An-a|=||An|-|a||不懂、、再答:Mathtype自己编辑再问:对不起,智商不够用,An小于0是什么意思?再答:我是分情况讨论,

an^2是收敛数列,证明an^2/n也是收敛数列

an^2收敛说明,an^2有界,就是说存在M>0,使得an^2

数列{an}有界充要条件 该数列的任何一个子列均有收敛子列

在完成证明之前先引入一个结论:任一数列中都能取出一个单调子列.证:引入一个定义:如果数列中的一项大于在这个项之后的所有各项,则称这一项是一个“龙头”.下面分2种情况:情况1如果在数列中存在无穷多个“龙

怎么证明 数列an收敛 则an有上确界和下确界

利用收敛数列必有界.那么有界集合,必有上确界和下确界.收敛数列必有界的证明证明:若an→a,那么有对所有的e>0,存在自然数N,当n>N,时|an-a|N时a-e

证明:若有界数列an发散,则an存在两个收敛子列,分别收敛到两个不想等的实数

设An={ai|i>=n},n=1,2,.An是有界集,所以存在上确界bn,下确界cn.且有:c1

设数列{nan}收敛,级数∑n(an-an-1)也收敛,证明级数∑an收敛

按定义将∑n(an-an-1)展开,找到三个级数之间部分和的关系再答:再答:不用客气^_^