若正实数x y满足x2 y2=4,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:31:50
若正实数x y满足x2 y2=4,
已知x、y均为实数,且满足xy+x+y=17,x2y+xy2=66,则x4+x3y+x2y2+xy3+y4=______

x2y+xy2=xy(x+y)=66,设xy=m,x+y=n,由xy+x+y=17,得到m+n=17,由xy(x+y)=66,得到mn=66,∴m=6,n=11或m=11,n=6(舍去),∴xy=m=

已知正实数x,y满足xy+2x+y=4,则x+y的最小值为______.

∵正实数x,y满足xy+2x+y=4,∴y=4−2xx+1(0<x<2).∴x+y=x+4−2xx+1=x+6−(2+2x)x+1=(x+1)+6x+1-3≥2(x+1)•6x+1-3=26-3,当且

若正实数xyz满足x+y+z=4 xy+yz+zx=5 则x+y的最大值是!

设t=x+y.∵x+y+z=4,∴z=4-(x+y)=4-t.又∵xy+yz+zx=5,∴xy=5-z(x+y)=5-zt=5-(4-t)t=5-4t+t².根据均值不等式,xy≤(x+y)

若正实数x,y满足x+4y+5=xy,则xy存在最值还是x+y存在最值?

x+4y>=4倍的根号下(xy)所以xy>=5+4倍的根号下(xy)利用上式可以解出xy的值

若正实数x ,y满足2x+y+6=xy.则xy的最小值.

2x+y+6≥6+2√2xyxy≥6+2√2xy(√xy-√2)^2≥8√xy-√2≥2√2或√xy-√2≤-2√2(不可能)所以xy最小值是(3√2)^2=18-------------------

若正实数x,y满足2x+y+6=xy,则xy的最小值为

xy-6=2x+y≥2√(2xy)令a=√xy则a²-2√2a-6≥0所以a≤-√2,a≥3√2因为√xy>0所以√xy≥3√2xy≥12所以最小值是12

正实数x,y,z满足9xyz+xy+yz+zx=4,求证:

证 (1)记t=xy+yz+xz3,∵x,y,z>0.由平均不等式xyz=(3xy•yz•xz)32≤(xy+yz+zx3)32于是4=9xyz+xy+yz+xz≤9t3+3t2,∴(

若正实数x,y满足2x+8y=xy,则x+y的最小值是?

2x+8y=xy2/y+8/x=1所以x+y=(x+y)*1=(x+y)(8/x+2/y)=10+8y/x+2x/yx>0,y>0所以8y/x+2x/y>=2√(8y/x*2x/y)=8当8y/x=2

1.若正实数x,y满足2x+8y=xy,则x+y的最小值是?

1."1"的活用2/y+8/x=1x+y=(x+y)(2/y+8/x)=2x/y+8y/x+10当且仅当2x/y=8y/x时,x+y>=14

若正实数x ,y满足2x+y+6=xy ,则xy的最小值是多少?

∵根号xy≤(x+y)/2∴xy≤(x*2+y*2+2xy)/4当且仅当X=Y取等当x=y时原式可化为3x+6=x*2∴x*2的最小值为3/2

若正实数x,y满足2x+y+6=xy,求xy的最小值.

2x+y+6=xy化简得:Y=(2X+6)/(X-1)X不等于0因为正实数x.所以X>0所以X>1函数Y=(2X+6)/(X-1)是单调递增所以X=2为最小值,Y=10所以XY最小值为XY=20

已知x、y均为实数,且满足xy+x+y=17,x2y+xy2=66,求x4+x3y+x2y2+xy3+y4的值.

方程ax^2+bx+c=0,判断这个方程有没有实数根,有几个实数根,就要用ΔΔ=b^2-4ac若Δ<0,则方程没有实数根Δ=0,则方程有两个相等实数根,也即只有一个实数根Δ>0,则方程有两个不相等的实

若正实数x,y满足2x+y+6=xy,则xy的最小值是?答案是18,

正实数x,y满足2x+y+6=xy∵2x+y≥2√2xy∴2√2xy+6≤xy∴xy-2√2xy-6≥0∴√xy≥3√2或√xy≤-√2﹙舍﹚∴xy≤18则xy的最小值是18.

已知实数x,y满足xy+1=4x+y,若x,y为正实数,则xy的取值范围是?

xy+1=4x+y①∵x>0,y>0根据均值定理∴4x+y≥2√(4x*y)=4√(xy)②①②==>xy+1≥4√(xy)∴(xy)-4√(xy)+1≥0解得√(xy)≥2+√3或0

若两个正实数x,y满足x^2+2xy-3y^2=0,求x^2+xy+y^2/x^2-xy+y^2

x^2+2xy-3y^2=0x^2+2xy+y^2-4y^2=0(x+y)^2=4y^2x+y=2y或x+y=-2yx=y或x=-3y因为两个正实数所以x=yx^2+xy+y^2/x^2-xy+y^2

若x,y是正实数,且满足x+2y=4,则xy的最小值是

答:这种题目基本上都是应用基本不等式a²+b²>=2aba+b>=2√(ab),(a>0,b>0)因为:x+2y=4>=2√(2xy)所以:√(2xy)

若正实数满足x+4y+5=xy,则xy最大值为多少

求xy的最大值就是求4xy的最大值就是求x.(4y)的最大值.记z=4y,原方程写做x+z+5=(xz)/4.所以xz=4(x+z+5).也就是说,x和z是下面这个方程的根:a^2-b.a+4(b+5

若正实数X,Y 满足2X+Y+6=XY ,则XY 的最小值是

2X+Y+6≥6+2√2xyxy≥6+2√2xy(√xy-√2)^2≥8√xy-√2≥2√2或√xy-√2≤-2√2(不可能)所以xy最小值是(3√2)^2=18

已知x,y为实数,x2y2+x2+4xy+13=6x,求x,y的值

x2y2+4xy+4+x2-6x+9=0,(xy+2)2+(x-3)2=0,∵(xy+2)2≥0,(x-3)2≥0,∴xy+2=0,x-3=0,∴xy=-2,x=3.将x=3代入xy=-2中,解得y=

若正实数x.y满足x+y=xy,则x+2y的最小值

由x,y为正得x=y/(y-1)>0、y=x/(x-1)>0,所以x>1、y>1,因此x+2y=y/(y-1)+2y=(y-1+1)/(y-1)+2(y-1+1)=3+1/(y-1)+2(y-1)>=