若椭圆x2 9 y2 m 9=1的离心率是1 2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:50:28
本题中的椭圆由于不知是否是标准方程,故用第二定义求解.设椭圆上以点是Q(x,y),则由椭圆第二定义,得:{√[(x-2)²+y²]}/|x-4|=1/2化简下,得:3x²
x的平方/25-y的平方/39=1
根据题意c=1,c/a=1/2a=2b²=a²-c²=4-1=3b=√3椭圆方程:y²/4+x²/3=1PF1+PF2=4PF1-PF2=12PF1=
由题意知双曲线的焦点在x轴上.椭圆的一个焦点为(1,0),椭圆实轴上的一个顶点为(2,0),所以设双曲线方程为x2a2-y2b2=1,则a=1,c=2,所以双曲线的离心率为e=ca=2.故选C.再问:
因e=c/a=1/2.2c=2所以c=1勾股定理得a^2=4.b^2=3所以x^2/4+y^2/3=1或y^2/4+x^2/3=1
x²/4+y²=1a²=4a=2b²=1c²=4-1=3c=√3e=c/a=√3/2焦点是(√3,0)和(-√3,0)F2(√3,0)AB⊥x轴A,B
1.过标准椭圆的左焦点F(1)作X轴的垂线交椭圆于点P,F(2)为右焦点,若∠F(1)PF(2)=60°,则椭圆的离心率为PF1+PF2=2aF1F2=2c设PF1=tPF2=2tF1F2=根号3te
c=1c/a=1/2a=2,b^2=3x^2/4+y^2/3=1
因为三角形PF1F2的三边成等比数列,那么有|PF1||PF2|=|F1F2|^2=4c^2
设:O(0,0),A(a,0),P(acost,bsint),t≠0OP⊥AP--->(acost,bsint)•(acost-a,bsint)=0 即a²(cos
F1F2=2ca^2=b^2+c^2PF2=2csin(15),PF1=2csin(75)PF1+PF2=2a=2c(sin(15)+sin(75))==2c(sin(45-30)+sin(45+30
(1)∵2c=2,且c/a=1/2,∴c=1,a=2.∴b²=3.∴x²/4+y²/3=1.(2)设M(x0,y0),x0²/4+y0²/3=1.∵F
a=√5,b=2,c=1e=c/a=√5/5再问:在三角形ABC中,AC=根号6/2,AB=根号2/2,1≦BC≦根号3,求三角形面积取值范围?
右焦点F2(c,0)AF=x,AF2=2a-x,FF2=2c角AFF2=60cos60=[x²+4c²-(2a-x)²]/(4cx)x=2(a²-c²
当m>1时,焦点在y轴上,长半轴为1;当m
解,假设a>c,由题知1>PF1/PF2=e≥(a-c)/(a+c),这时P点位于椭圆的长轴端即(a-c)/(a+c)≤e<1,左端上下同除以a并整理得e^2+2e-1≥0解得e≥√2-1或e≥-1-
右准线方程:x=a^2/c,a^2/c=1,a^2=c,离心率e=c/a=√3/3,a=√3c,(√3c)^2=c,c=1/3,a=√3/3,b=√2/3,则椭圆方程为:3x^2+9y^2/2=1.
点(c,2c)在椭圆上,则:c²/a²+4c²/b²=1b²c²+4a²c²=a²b²4a²