若方阵的特征值全为0,则必存在正整数K
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:02:50
显然0是它的特征值,并且以0为特征值的基础解系有n-1个,故有0的重数是n-1;又因为每行都有n个1,考虑到(n-1)*1+(1-n)=0所以它还有特征值n.其实对于后面一个特征值,你也可以看看特征值
A*=A的行列式乘以A的逆=(-1乘以2乘以-3)乘以A的逆=6倍的A逆3阶方阵A的特征值为-12-3,A逆的特征值为-1,1/2,-1/3,所以A*的特征值为-6,3,-2
A的m次方的特征值=A的特征值的m次方,故先求A的m次方的特征值.既然A的m次方=0,0矩阵的特征值当然是0,故A的m次方的特征值为0.故A的特征值=0.
需两个知识点:1.零矩阵的特征值只有零2.若λ是A的特征值,g(x)是x的多项式,则g(λ)是g(A)的特征值本题目的证明:设λ是A的特征值,则λ^k是A^k的特征值因为A^k=0,而零矩阵的特征值只
x为特征值Aa=xaA*Aa=xA*a|A|a=xA*aA*a=(|A|/x)a即A*的特征值与A特征值的关系为λ(A*)=|A|/λAa=xaAAa=xAaA^2a=x(xa)=x^2aA^2的特征
题目没写全吧再问:则KA-1的特征值为,不好意思,谢谢您了再答:结果应该是2K-1过程设x是特征值2的特征向量Ax=2x则kAx=2kx则kAx-x=2kx-x即(kA-1)x=(2k-1)x所以,k
设a是特征值,对应的特征向量为x,即Ax=ax,左乘A得A^2x=aAx=a^2x,继续递推下去有A^kx=a^kx,即a^k是A^k(=0)的特征值,因为a=0,所以A^k=a^k=0
知识点:若a是A的特征值,且A可逆,则a/|A|是A*的特征值所以A*必有一个特征值为2/6=1/3.你的好评是我前进的动力.我在沙漠中喝着可口可乐,唱着卡拉ok,骑着狮子赶着蚂蚁,手中拿着键盘为你答
必有一个特征值为a.事实上|A-rE|=0中把其余各行都加到第一行,你会发现第一行每个元素都成了a-r,当r=a时行列式为0,这说明r=a是行列式的一个根,即a是一个特征根.
∵AX=0有非零解∴存在ε≠0,使Aε=0=0ε即A有特征值0
再答:�����������⣬ϣ�����ܲ��ɣ�лл��再问:û���װ�������再答:����Ӧ���и����壺���������ʽֵ��������ֵ�Ļ�再问:���ˡ�Ҫ���ڰ��
因为|5A+3E|=0,所以|A-(-3/5)E|=0,从而-3/5是A的一个特征值.
.你再仔细解下看看.
知识点:若a是A的特征值,g(x)是x的多项式,则g(a)是g(A)的特征值你的题目:g(x)=x^2,g(2)=2^2=4,g(A)=A^2所以4是A^2的特征值注意此类题型的扩展.
Ax=axA^mx=A^m-1Ax=aA^m-1x=...=a^mx
利用特征值与矩阵多项式的关系可求解若A有特征值x,则A的多项式f(A)的特征值为f(x)A的行列式为-2,A*=|A|A^(-1)=-2A^(-1),A*有一个特征值为6,即知A有一个特征值满足-2x
B的特征值,2,2,2再答:所以B的相似为diag(2,2,2)再问:B的特征值怎么算再答:带进去啊再答:A的特征值带入A
必有一个特征值为零Ax=0有非零解表明A的秩
不能,比如:再问:你找这个矩阵的思路是怎样的。。以特征多项式入手吗(特征值-1)^n再答:你只要学过若尔当标准型这个问题就是很显然的……
幂零矩阵均满足条件,即对于任意n阶方阵A,若存在k使得A^k=0则称A幂零,而一个矩阵幂零的充要条件是其特征值全为零.我们考虑幂零矩阵的Jordan标准型那么任意的形如PJP^(-1),(P可逆)的矩