若方阵满足A²=A则一定成立的是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:08:30
若方阵满足A²=A则一定成立的是
若互不相等四条线断的长a,b,c,d满足a/b=c/d,m是任意实数,则下列各式一定成立的是?

答案是D可以这样理解a是b的倍数c是d的倍数假设a/b=c/d=n两边分子上a-b等于少掉一个b的倍数即倍数等于n-1c-d同理,分母上a+b等于多了一个b的倍数即倍数等于n+1,c+d同理所以等式两

方阵AB=BA方阵A和方阵B需要满足什么条件?

没有一般的充要条件.只是充分条件的话,貌似有一个是正交阵就可以?

证明题 设方阵A满足A的k次方等於0 对某个正整数k成立 证明:A的特征值一定为0

证明:设λ是A的特征值则λ^k是A^k的特征值(这是定理)而A^k=0,零矩阵的特征值只能是0所以λ^k=0所以λ=0即A的特征值一定为0.

若不等式b/a+a/b>2成立,则a与b满足的条件是?

您好!b/a+a/b>2通分,(b^2+a^2)/ab>2,……^2表示平方b^2+a^2>2ab,a^2-2ab+b^2>0,(a+b)^2>0,a+b≠0,即a≠b;又∵a、b在原式中作分母,∴a

若函数y=f(x)在R上可导且满足不等式xf′(x)>-f(x)恒成立,且常数a,b满足a>b,则下列不等式一定成立的是

设g(x)=xf(x),则g'(x)=[xf(x)]'=x'f(x)+xf'(x)=xf′(x)+f(x)>0,∴函数g(x)在R上是增函数,∵常数a,b满足a>b,则有af(a)>bf(b),故选B

试证若n阶方阵A满足A^2=A,则A的特征值为0或1

A(A-E)=0,|0E-A|*|1E-A|=0,特征值为0或1.或者设特征值为r,特征向量a,有Aa=ra,A^na=r^na,A^2-A=0,A^2a-Aa=0,r^2-r=0,则r=0或1.

若方阵A满足方程A平方-2A+3I=0,则A,A-3I都可逆,并求它们的逆矩阵,如何证明?

证明:因为A^2-2A+3I=0所以A(A-2I)=-3I所以A可逆,且A^-1=(-1/3)(A-2I).又由A^2-2A+3I=0得A(A-3I)+A-3I+6I=0所以(A-3I)(A+I)=-

设A为N的阶方阵,若A经过若干次初等变换成矩阵B,则()成立?

B因为初等变换只会改变对应行列式的值的正负

设方阵A满足A平方+3A-E=0,则 (A+3E)的负1次方等于

A²+3A-E=0A(A+3E)=E所以(A+3E)^(-1)=A

若函数y=f(x)在R上可导且满足不等式xf′(x)+f(x)>0恒成立,且常数a,b满足a>b,则下列不等式一定成立的

令g(x)=xf(x),则g′(x)=xf′(x)+f(x)>0,∴函数g(x)在R上单调递增.∵a>b,∴g(a)>g(b),∴af(a)>bf(b).故选A.

若n阶方阵A满足A²-2A-4I=0,则A的逆矩阵等于多少?急,在线等.

A²-2A-4I=0所以A(A-2I)=4I所以A[(1/4)(A-2I)]=I所以A^(-1)=(1/4)(A-2I)

已知n阶方阵A满足 A^2-3A+E=0,则A的逆矩阵为多少?

A^2-3A+E=03A-A^2=E(3E-A)A==EA^(-1)=3E-A

4.若n 阶方阵 A满足,A^2=0 则下列命题哪一个成立 ( ).

要是取巧,你想A=0是可能的,但也不是唯一的解,所以四个答案只有D正确要是正常解题,因为r(A)+r(B)-n

设n阶方阵A,B满足A=0.5(B+E),证明:A^2=A成立的充要条件是B^2=E?

充分条件A^2=AA^2=0.5(B+E)*0.5(B+E)=0.25(B+E)(B+E)=0.25(B^2+2B+E)=0.5(B+E)B^2+2B+E=2(B+E)得B^2=E必要条件A=0.5(

设n阶方阵A,B满足A=0.5(B+E),证明:A^2=A成立的充要条件是B^2=E.

若B²=E,有A²=((B+E)/2)²=(B²+2B+E)/4=(E+2B+E)/4=(B+E)/2=A成立若A²=A,即((B+E)/2)&sup

n阶方阵满足A^2-2A+E=0,则A的逆矩阵等于?

因为A^2-2A+E=0所以A(A-2E)=-E所以A可逆,且A^-1=2E-A.

若n阶方阵A满足,A^2=0,则以下命题哪一个成立?

选D利用Sylvester不等式rank(A)+rank(B)

线性代数题求解,若A为n阶方阵,I是n阶方阵,问A^3-I=(A-I)(A^2+A+I)一定成立吗?请说明理由

一定成立.利用分配律:(A-I)(A^2+A+I)=A(A^2+A+I)-I(A^2+A+I)=(A^3+A^2+A)-(A^2+A+I)=A^3-I