若方程组3x 2y=a 2,2x 3y=a的解x与y的和为4,则a的值为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:35:17
原式=x3-2y3-3x2y-3x3+3y3+7x2y=-2x3+y3+4x2y
因为A+B+C=x3-2y3+3x2y+xy2-3xy+4+y3-x3-4x2y-3xy-3xy2+3+y3+x2y+2xy2+6xy-6=1,所以,对于x、y、z的任何值A+B+C是常数.
(1)9a-ab2=a(9-b2)=a(3+b)(3-b); (2)3x3-6x2y+3xy2=3x(x2-2xy+y2)=3x(x-y)2;(3)a2(2a-3)+b2(3-2a)=(2a
原式=2x2y+2xy-3x2y-3xy-4x2y=-5x2y-xy当x=-2,y=12时,原式=-9.
∵代数式x3+y3+3x2y+axy2含有因式x-y,∴当x=y时,x3+y3+3x2y+axy2=0,∴令x=y,即x3+x3+3x3+ax3=0,则有5+a=0,解得a=-5.将a=-5代入x3+
2X1+X2+X3+X4+X5=6①X1+2X2+X3+X4+X5=12②X1+X2+2X3+X4+X5=24③X1+X2+X3+2X4+X5=48④X1+X2+X3+X4+2X5=96⑤①+②+③+
(1)原式=-(a-1)2;(2)原式=-x(x-y)2;(3)原式=(x+1)2(x-1)2;(4)原式=(x+y-x+y)2=4y2.
(x1)+(a1)(x2)+(a1)^2(x3)=1(1)(x1)+(a2)(x2)+(a2)^2(x3)=1(2)(x1)+(a3)(x2)+(a3)^2(x3)=1(3)(2)-(1)得(a2-a
化简得:9-12Y^2+6Y+4+12Y^2+4Y-10-10Y+X-Y+1=X-Y+4带入X、Y值得:=3
(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3=-2y3=-2×(-1)3=2.因为化简的
A+B+C=(x3+3x2y-5xy2+6y3-1)+(y3+2xy2+x2y-2x3+2)+(x3-4x2y+3xy2-7y3+1)=(1+1-2)x3+(3+1-4)x2y+(-5+2+3)xy2
根据题意得:(x3-3x2y)-(3x2y-3xy2)=x3-3x2y-3x2y+3xy2=x3-6x2y+3xy2,故选C.
原式=x3+3x2y-5xy2+6x3+1-2x3+y3+2xy2+x2y+2-4x2y-7x3-y3+4xy2+1=-2x3+xy2+4,由于y为偶次幂,故误把“x=3,y=-1”写成“x=3,y=
(1)(x3-2x2y+3y2)-(-2x3-3x2y+5y2)=x3-2x2y+3y2+2x3+3x2y-5y2=3x3+x2y-2y2,答:这个多项式为3x3+x2y-2y2.(2)当x=-12,
(x+2)²+|y-1|=0平方数与绝对值都是非负数两个非负数的和为0,那么这两个数都是0x+2=0y-1=0解得:x=-2,y=1x³+3x²y+3xy²+y
多项式3x2y-5xy3+y2-2x3的各项为3x2y,-5xy3,y2,-2x3,按x的降幂排列为-2x3+3x2y-5xy3+y2.故答案为:-2x3+3x2y-5xy3+y2.再问:为什么是这样
x2y+xy2=xy*(x+y)因为x+y=-(7+xy)又x+y=(9+2xy)\3所以(9+2xy)\3=-(7+xy)3+2xy\3=-7-xy5xy\3=-10解得xy=-6所以x+y=-(7
如果x,y符号相反,绝对值相等,即y=-x,代入原方程组,得3x-2x=m+1,4x-2x=m-1,即x=m+1,2x=m-1解之,2(m+1)=m-1,得m=-3如果x比y大1,即x=y+1,代入原
由题意得:3C=A+B=8x2y-6xy2-3xy+7xy2-2xy+5x2y=13x2y+xy2-5xy,∴C=13x2y+xy2−5xy3,故:C-A=13x2y+xy2−5xy3-(8x2y-6
x3-y3-x2y+xy2=(x-y)(x2+xy+y2)-xy(x-y)=(x-y)(x2+xy+y2-xy)=(x-y)(x2+y2)