若数列an和数列bn满足等式an=b1 2 b2 2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:21:59
由an+1=an+2n,得an+1-an=2n,∴n≥2时,a2-a1=2,a3-a2=4,…,an-an-1=2(n-1),以上各式相加,得an-a1=(n-1)(2n-2+2)2=n2-n,∵a1
(n+1)/bn=2∴bn=b1×2^(n-1)b1=a2-a1=3-1=2∴bn=2^n∴a(n+1)-an=2^n∴a2-a1=2a3-a2=2^2a4-a3=2^3……an-a(n-1)=2^(
an若为等差数列,则an=n.由bn=an+1+(-1)n次方乘以an可知bn奇数相都为1偶数项为2an+1所以前bn前n项和就好求了····但是看第二问觉得你题目打错了还是怎么的
即对任意n∈N,(a+n)/(a+n-1)≥(a+8)/(a+7)两边同减1:1/(a+n-1)≥1/(a+7)此不等式可分三种情况:(1)a+7≥a+n-1〉0显然n≥8时不成立(2)0〉a+n-1
∵an+an+1=12(n∈N*),a1=−12,S2011=a1+(a2+a3)+(a4+a5)+…+(a2010+a2011)=-12+12+…+12=−12+12×1005=502故答案为:50
an=2n-1a(n+1)=2n+1a(n+1)-an=2已知cn=2^n,[a(n+1)-an][b(n+1)-bn]=cn,则b(n+1)-bn=2^(n-1)b(n+1)-2^n=bn+2^(n
1.d=A2-A1=a-1An=A1+(n-1)d=1+(n-1)(a-1)A3=2a-1,A4=3a-2,B3=A3A4=(2a-1)*(3a-2)=126a^2-7a+2=12(6a+5)*(a-
n=1+1/n,Sn=b1+b2+b3+.+bnSn=1+1/1+1+1/2+1+1/3+.+1+1/nSn=n+1+1/2+1/3+.+1/n当n趋于无穷大时,上式可以近似用ln(n)+C来模拟亦即
由AnA(n-1)=A(n-1)-An两边同时除以AnA(n-1),便得到1/An-1/A(n-1)=1,所以B1=3,Bn-B(n-1)=1,于是Bn=n+2.所以An=1/(n+2)则An/n=1
1)b3=(a3)^2+1a3=1+2dd=a-1所以12=(1+2a-2)^2+1a=(√11+1)/2an=1+(n-1)*(√11-1)/22)an=a^(n-1)bn=a^[2(n-1)]+1
先求得an=a+n-1;bn=(a+n-1)/(a+n)=1-1/(a+n);则由bn>=b8,可知,1/(8+a)>=1/(n+a)恒成立;移项,同分后可知,(n-8)/[(8+a)(n+a)]>=
(1){an}是等差数列,a1=1,a2=a(a>0),an=1+(n-1)(a-1)a3=2a-1,a4=3a-2b3=a3*a4=(2a-1)(3a-2)=12a=2,或-5/6(舍去)所以a=2
an=2*3^(n-1)bn=an+(-1)^n*ln(an)=2*3^(n-1)+(-1)^n*[ln2+(n-1)ln3]Sn=b1+b2+..+bn=(3^n-1)+(-1)^n*[nln2+(
a(n+1)-an=b(n+1)/2的n+1次方=2n次方是对2吧,也就是说分母是2的n次方,对吧!如果对2,那么bn=2的n+1次方(n>1),b1=2,Sn=(2的n+2次方)-6
解题思路:根据题意,利用等差数列的定义即可证明出数列为等差数列解题过程:
d(n)=2^n+n,p(1)=d(1)=2^1+1=3,p(n+1)=d(n+1)+d(n)=2^(n+1)+(n+1)+2^n+n=3*2^n+2n+1,L(2n-1)=d(2n-1)=2^(2n
由a32+21=3,得a3=2,a2=a3=2,由a42+22=3,得a4=4,由a54+42=3,得a5=4,a4=a5=4,由a64+44=3,得a6=8,由a78+84=3,得a7=8.a6=a
(1)a(n+1)-an=(n+1+2013)-(n+2013)=1∴b(n+1)-bn=cn/[a(n+1)-an]=cn=2^n+n∴bn-b(n-1)=2^(n-1)+n-1...b2-b1=2
等差数列a3+a6=a2+a7=16a3a6=55所以a3和a6是方程x²-16x+55=0的根(x-5)(x-11)=0d>0a6>a3所以a3=5,a6=113d=a6-a3=6d=2a