若抛物线y2=4x的弦ab垂直于x轴,且labl=4倍根号2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:26:32
过焦点的通径长为4,所以ab为通径,三角形面积即为(2p*p/2)/2=4*1/2=2常规解法:简单讲一下思路设直线方程点斜式(y-1)=K(x-1)y=kx-k+1与y2=4x连立求解(kx-k+1
首先y^2=4x,2p=4,p=2,焦点(2,0)..抛物线关于y轴对称且AB垂直于x轴,设AB与x轴交与P点,由|AB|=4√3,得|AP|=|BP|=2√3,即A的纵坐标是2√3或-2√3,代入解
l垂直于x轴,所以A,B对称(不妨设A在上)因为|AB|=4根号3,所以A点纵坐标为2根号3则带入抛物线方程可求得x=3,则直线AB方程为x=3
焦点(1,0)y=k(x-1)y²=4xk²(x-1)²=4xk²x²-(2k²+4)x+k²=0x1+x2=(2k²+
因为|AB|=4根3弦AB垂直x轴画出抛物线的大致图像,由对称性可知|AB|在X轴上半部分和在X轴下半部分等长,为|AB|的一半,即为2根3即点A或点B纵坐标为2根3代入原函数得X=3因为抛物线的焦点
解抛物线y²=4x.焦点F(1,0),准线:x=-1.由|AF|=3及抛物线定义可知,点A的横坐标为2,∴点A的纵坐标为±2√2.[[1]]当A(2,2√2)时,可知直线方程为y=(2√2)
不妨设A点在x轴上方,依题意可知yA=23,则xA=124=3而抛物线焦点坐标为(1,0)∴AB到焦点的距离是3-1=2,故答案为2
∵倾斜角为π3,∴k=tanπ3=3,2p=4,p2=1,∴焦点(1,0),直线方程为y=3(x-1),代入y2=4x,整理得3x2-10x+3=0,∴x1+x2=103,抛物线的准线为x=-1根据抛
焦点(1,0),准线x=-1A到准线距离=x1-(-1)=x1+1B到准线距离=x2+1抛物线上的点到焦点和到准线距离相等所以AB=AF+BF=A到准线距离+B到准线距离=x1+1+x2+1=x1+x
∵y2=4x,∴p=2,F(1,0),把x=1代入抛物线方程求得y=±2∴A(1,2),B(1,-2),∴|AB|=2+2=4∴所求圆的方程为(x-1)2+y2=4.故答案为:(x-1)2+y2=4.
设点A(x1,y1),B(x2,y2),M(x3,y3),N(x4,y4)把直线AB:y=k(x-1)代入y2=4x,得k2x2-(2k2+4)x+k2=0,∴x3=x1+x22=1+2k2,y3=k
解题思路:数形结合解题过程:
答案:2 解析:由双曲线得其渐近线为y=±ax,∴a=4.∴抛物线方程为y2=4x.∴|AB|=4.∴S=×1×4=2.再问:能麻烦您完善一下您的过程么?再答:你哪里不明白吧?
由题意,抛物线y2=x的焦点坐标为(14,0),准线方程为x=-14,根据抛物线的定义,∵|AB|=4,∴A、B到准线的距离和为4,∴弦AB的中点到准线的距离为2∴弦AB的中点到直线x+12=0的距离
设A(x1,y1),B(x2,y2)则y1^2=4x1y2^2=4x2相减,(y2+y1)(y2-y1)=4(x2-x1)4(y2-y1)=4(x2-x1)kAB=(y2-y1)/(x2-x1)=1A
抛物线参数方程为y=t,x=′t22p,设B(t212p,t1),C(t212p,-t1),A(t222p,t2)所以求得AC的直线方程为y-t2=(t2−t1)(x−t222p)t222p−t212
两种方法你都试试一:算AC和AB和CB的长度各是多少,如果满足直角三角形勾股定理,就能证明二:如果AM和BM和MC长度等,也能证明是直角三角形不过没有实地算过,你算算
由抛物线的方程y2=4x可得p=2,故它的焦点F(1,0),准线方程为x=-1.由抛物线的定义可得|AB|=7=|AF|+|BF|=(x1+1)+(x2+1),∴x1+x2=5.由于AB的中点M(x1
设OA:y=kx;OB:y=-x/k由y=kx;y^2=4x得x=4/k^2,y=4/k,即A(4/k^2,4/k)同理B(4k^2,-4k)则xP=1/2(xA+xB)=2(k^2+1/k^2)≥4
抛物线y^2=4xA(a^2,2a),B(b^2,2b)k(OA)=2/a,k(OB)=2/bOA⊥OBk(OA)*k(OB)=-1ab=-4AB的中点P(x,y)xA+xB=2x,yA+yB=2ya