若幂级数Cn(z-1)^n在z=-1处收敛,则它必在

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:43:36
若幂级数Cn(z-1)^n在z=-1处收敛,则它必在
4 已知幂级数 ∞Σ n=1 cn(z + i)n在z = i处收敛,判别级数在z = 2处的敛散性

z=i时级为∞Σn=1cn(2i)^n收敛半径R=2所以根据阿贝尔定理在Z

如图,正三角形ABC的边长为1,点M、N、P分别在BC、CA、AB上,设BM=x,CN=y,AP=z,且x+y+1=1

简单,首先改正你的问题是x+y+z=1根据公式三角形面积为1/2absinC所及三角形mnp的面积就等于那个三角形ABC的面积减去那三个小三角形的面积即S△MNP=1/2sin60-1/2x*(x+y

求幂级数∑(n=1,∞) Z^n/n^2的收敛半径 即区间n=1至∞,n的平方分之一,乘以z的n次方的收敛半径.

可以用D'Alembert比值判别法.a[n]=1/n²,a[n+1]=1/(n+1)²,因此a[n+1]/a[n]→1.对z≠0,a[n+1]·z^(n+1)/(a[n]·z^n

您可不可以帮我把e^(z/z-1)展开成z的幂级数?

(1)e^(z/(z-1))无法给出通式1.e^(z/(z-1))=e^(1+1/(z-1))可以按照泰勒展开令[e^(1+1/(z-1))](n)'代表n次导数那么[e^(1+1/(z-1))](1

复数z=[(1+i)^3(a+bi)]/(1-i), |z|=4,z对应得点在第一象限,若复数0,z,zˊ对应的点是正三

再问:BOCΪʲô����60�ȣ������������Dz�����60����再答:�ǵ�,���������õ���һ��,���һ�������30��.再问:额。。。你写了个boc=30度,

正三角形ABC的边长为1,点M,N,P分别在边BC,CA,AB上,设BM=x,CN=y,AP=z,且x+y+z=1.

1.三角形MNP的面积=三角形ABC的面积-三角形BMP的面积-三角形CNM的面积-三角形APN的面积,可用面积公式S=absinC/22.x=y=z=1/3

若复数z满足z^n=1,其中n属于N+,则1+z+z^2+...+z^n=

z≠1时1+z+z^2+...+z^n=(1-z^(n+1)]/(1-z)=(1-z^n*z)/(1-z)=(1-z)/(1-z)=1z=1时,1+z+z^2+...+z^n=1+1+1...+1=n

复变函数,在例4.3中,为什么在讨论级数 z^n/n 在收敛圆上的敛散性时,只讨论z=1和z=

你移步你图片的最后一行,这个例题只是为了说明收敛圆上既有收敛点,又有发散点所以其余点就没有讨论了.

复数z的n次方=1,1+z.+z的n次方=

∵z的n次方=1,∴z的(n+1)次方=z.又∵1+z.+z的n次方为等比数列前n+1项和,公比为z,当z≠1时,根据等比数列求和公式,得1+z.+z的n次方=(1-(z的(n+1)次方))/(1-z

把F(z)=1/z(z-1)在1

点击放大:

幂级数展开 f(z)=2z/z+2在点z=1展成幂级数,并求幂级数的收敛半径

http://hiphotos.baidu.com/zjhz8899/pic/item/fd73d4001e22e7277bec2c87.jpeg

求幂级数的收敛半径!∞∑ z^n/n!n=0

R=lim(n->∞)an/a(n+1)=lim(n->∞)1/n!/1/(n+1)!=lim(n->∞)(n+1)=∞

z在

解题思路:本题考察有理数的运算,可以利用加法结合律进行简便计算解题过程:

哪位大神可以帮我把e^(z/z-1)展开成z的幂级数,

(1)e^(z/(z-1))无法给出通式1.e^(z/(z-1))=e^(1+1/(z-1))可以按照泰勒展开令[e^(1+1/(z-1))](n)'代表n次导数那么[e^(1+1/(z-1))](1

将函数 f(Z)=Z/Z+2展开成Z-2的幂级数

f(z)=1-2/(z+2)=1-2/[(z-2)+5]=1-0.4*1/[1+(z-2)/5]=1-0.4*Σ【-(z-2)/5】^n(0到+∞)

把函数f(z)=1/3z-2 展开成z的幂级数

1/z=1/(1-(1-z))=1+(1-z)+(1-z)^2+.f(z)=1/3*(1+(1-z)+(1-z)^2+.)+2

若复数z满足,z*z拔+(1-2i)*z+(1+2i)z拔

设z=a+bi,则:z拔=a-bi.则:z*z拔=(a+bi)(a-bi)=a²+b²(1-2i)z+(1+2i)z拔=(z+z拔)+2i(z拔-z)=2a+4b则:a²

若复数Z满足|Z|小于等于5,Re(z)小于Im(z),Re(z)属于N,Im(z)属于N,则复数Z有几个

楼上完全解错了,共有6个符合条件的复数.点击放大: