若存在三阶零矩阵B,满足AB=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:55:52
若存在三阶零矩阵B,满足AB=0
证明逆矩阵存在已知 设n阶方阵A,B满足 AB=A+B 证明 A-E 可逆AB- A- B=0B(A-E)=AB=A(A

这不是原题吧由AB-A-B=0得(A-E)B=A[注意左右的差别]则B=(A-E)^-1A但从你题目中推不出A-E可逆若要继续讨论,请给原题再问:已知设n阶方阵A,B满足AB=A+B证明A-E可逆这就

n阶矩阵AB满足A+2B=AB证明AB=BA

证明:由A+2B=AB得(A-2E)(B-E)=2E所以B-E可逆,且(B-E)^-1=(1/2)(A-2E).所以(B-E)(A-2E)=2E整理有BA=A+2B再由已知得AB=BA.

已知矩阵A,矩阵B满足AB=BA,求矩阵B

碰到这种问题不要偷懒,直接用待定系数法把B的9个元素设出来,然后乘开来比较等上面的做法做过一遍之后再做取巧一点的办法:(A-E)B=B(A-E),同样乘开来比较上面两个都做过之后可以设法去证明与Jor

设非零矩阵A是m*s矩阵,B是s*n矩阵满足AB=0,则R(A)

不对.反例:A:ab00cd00B:00001234A:2×4矩阵,a,b,c,d任取.B:4×2矩阵,R(B)=2AB=0

已知矩阵A,B满足AB=BA,证明:A,B是同级方阵

设A,B分别是m*n和n*m矩阵,则AB是m级方阵,BA是n级方阵.所以m=n.

一道矩阵运算设二阶矩阵A,B满足BA-B=2E,E是单位矩阵 已知B的伴随矩阵B* 求矩阵AB的伴随矩阵B*是 { 0

(B*)·B=|B|E.取行列式.|B*||B|=|B|².|B|=|B*|=1BA-B=2E,左乘B*:A-E=2B*.A=2B*+E=(12)-23

矩阵运算设二阶矩阵A,B满足BA-B=2E,E是单位矩阵 已知B的伴随矩阵B* 求矩阵AB的伴随矩阵B*是 { 0 1

BA-B=2E两端同时乘上B的伴随阵,B*B*BA-B*B=2B*由B*B=|B|E|B|A-|B|E=2B*对B*B=|B|E两端同取行列式得到|B|=|B*|所以|B*|A|-|B*|E=2B*从

若s×n矩阵A和n×s矩阵B满足AB=0,则秩(A)+秩(B)≤n?

也是对的,看一下Sylvester不等式

设A,B都是n阶矩阵,A可逆,且存在一个常数l,满足A=(A-lB)B,求证:AB=BA

若常数l=0则AB=A,即B=E;若常数l非零,E=(E-lA^{-1}B)B,所以B可逆且E=B(E-lA^{-1}B),相减得lA^{-1}B^2=lBA^{-1}B,左乘l^{-1}A右乘B^{

若AB=BA,则矩阵B就称为矩阵A的可交换矩阵.试求矩阵A的可交换矩阵应满足的条件. A=1 1 0 1

B似乎是A得一个广义逆这么简单得矩阵,你设B=a,b,c,d带入算就可以了B=abcdAB=a+cb+dcdBA=aa+bcc+dAB=BA可以得到a=a+c==>c=0b=b+d==>d=0d=c+

线性代数矩阵证明若方阵A、B满足AB+BA=E,且A^2=0,求证(AB)^2=AB

(AB)^2-AB=ABAB-AB=A(BA-E)B=A(BA-AB-BA)B=-A^2B^2=0SO:(AB)^2=AB

已知三阶矩阵A和B满足A+B=AB,求A

由A+B=AB,得(A-E)(B-E)=E所以A-E=(B-E)^-1=0-30200001的逆矩阵=01/20-1/300001所以A=11/20-1/310002

若n阶矩阵A,B满足条件AB-A+2E=0,则矩阵AB-BA+2A的秩为?

因为AB-A+2E=0所以A(B-E)=-2E所以A可逆,且(B-E)A=-2E所以BA-A+2E=0所以AB=BA所以r(AB-BA+2A)=r(2A)=n.

已知矩阵A={3.-1.0;0.4.5;2.1.2},B为三阶矩阵,且满足A^2+3B=AB+9I,求矩阵B

我先告诉你AC=BC时C不可以轻易约掉因为可变为(A-B)C=0当A不等于B(即A-B不等于0),C不为0时(A-B)C也可以等于0举个例子当A-B={100;010;001}C={011;101;1

A 是mxn 矩阵,则存在矩阵B,使得AB = 0 且有r(A) +r(B)=n

设r(A)=a,则可分解A=Pdiag(T,O1)Q,其中T为aXa的对角阵P,Q分别为m阶和n阶可逆方阵,O1为(m-a)X(n-a)的零矩阵令B=Q^(-1)diag(O2,S),其中O2为aX(

为什么矩阵A,B满足AB=0,且|A|≠0时必有B=0?

det(A)≠0意味着A非奇异,故可逆.用A^(-1)左乘AB=0两边可得B=0.

4 1 0 设矩阵A= 2 4 1 ,矩阵B满足AB-A=3B+E,求矩阵B (详解,3 0 5

是问的:410A=241305AB-A=3B+E么?再问:恩恩是的再答:AB-A=3B+E(A-3E)B=A+EB=((A-3E)^-1)(A+E)B=110251(211)^-1*(306)5103