若在点x的某邻域函数大于0,且极限为A则必有A大于0,这句话对不对

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:11:02
若在点x的某邻域函数大于0,且极限为A则必有A大于0,这句话对不对
某点导数大于0,其原函数在这点小邻域上单调递增,这句话错在哪?特例是什么..

你是想说“若函数在某点导数大于0,则该函数在该点的某小邻域上单调递增”吧?看如图例子,那么在0的任何邻域内,函数不单调啊

已知函数f(x)在x=6的邻域内可微,且x趋向6 limf(x)=0,limf'(x)=88 求下列函数的极限

首先,通过观察分子分母,发现是0/0型,使用L'Hospital法则原式=lim{(e^x-1-x)^2/[(sinx)^4+4x(sinx)^3cosx]}e^x在x=0处Taylor展开有e^x=

若函数y=f(x)在点x0的某邻域内有连续的三阶导数,且f(x)的一阶和二阶导数为0,三阶导数不为0,则X0为什么不是f

f(x)在x0的邻域内泰勒展开,有:y=f(x0)+f'(x0)(x-x0)+f"(x0)(x-x0)^2/2!+f"'(x0)(x-x0)^3/3!+.因为f'(x0)=f"(x0)=0,所以y=f

在x0的邻域内,函数f(x)大于0,limf(x)=a,x趋于x0时,证明a大于0.请帮忙证明下.

结论错误.如f(x)=x,x0=0,此时a=0.若改成a>=0结论就对了.再问:怎么证明了?我想了好久也不会证明。请给些帮助再答:结论错误你还证明什么?已经给你反例了。再问:证明你说的A大于等于0的结

已知函数f(x,y)在点(0,0)的某个邻域内连续,且limx→0,y→0f(x,y)-xy(x2+y2)2=1,则(

由limx→0,y→0f(x,y)-xy(x2+y2)2=1知,因此分母的极限趋于0,故分子的极限必为零,从而有f(0,0)=0;因为极限等于1;故f(x,y)-xy~(x2+y2)2(|x|,|y|

一个函数在某点X0可导且导数为正,则是否一定存在它的一个邻域,在这个邻域内函数是单调上升的?

这个是不能的.考虑函数f(x)定义如下f(x)=x^(3/2)·sin(1/x)+xx≠0f(x)=0x=0在x=0处的情况.(任意领域都不单调是因为其导数在0点的任意领域即能取正值,又能取负值)

"函数f(x)在点x.的某一去心邻域内有定义"是什么意思

有定义就是指这个函数有具体的表达式,也可以是抽象的形式,也可以是具体的形式,总是有定义就是你要规定这个函数到底是什么样的函数.当然它必须满足函数的定义.

设二元函数z=f(x,y)在点P(0,1)的某邻域内可微,且f(x,y+1)=1+2x+3y+0(p),其中p=√(x^

有点难,以前学过的,现在好像忘记了.建议你看一看课本例题.

如果lim(x趋于x0)f(x)=3,那么必存在x0的某邻域,当x在该邻域内(x不等于x0),恒有f(x)大于0,为什么

极限的局部保号性.用极限定义:取ε=1,必存在x0的某邻域,当x在该邻域内(x不等于x0),恒有:3-ε0

某点导数大于0,其原函数在这点邻域内单调递增

函数在某一点的导数大于0,并不能保证函数在该点的某个邻域内单增,例如以下反例:它在x=0处的导数大于0,但在x=0的任何邻域内都不单调,函数图象如下:事实上,函数在一点x0处的导数大于0,只能保证在x

设F(X)在点X0的某邻域内二阶可导,且F(X0)的导数等于0,则F(X0)的二阶导数大于0是F(X0)为F(X)极小值

选B高数同济五版上册155页定理3(第二充分条件)当F(X0)的二阶导数=0,F(X0)可能为F(X)极小值、极大值、也可能没有极值因此必要条件不成立,选B充分条件

若函数f(x)连续且f(x0)>0,则f(x)在x0点某邻域内单调增加,这句话怎么错了?

这个不能确定吧再答:�Ͼ���֪������再问:f'��x0����0�����再答:����ĵ㵹��С������ߵ�������再问:�������Ӧ��ֻҪ���ھͿ����˰�����Ϊf'

证明:若函数f(x)在点x0连续且f(xo)不等于0,则存在x0的某一邻域U(x0),当x属于U(x0)时,f(x)不等

设f(xo)=a≠0.∵函数f(x)在点x0连续,∴对于ε=|a|/2>0存在δ>0当x∈﹙x0-δ,x0+δ﹚=U(x0)时|f(x)-f(xo)|<ε.即x∈U(x0)-|a|/2<f(x)-a<

高数:函数f(x)连续,且在0处的导数值大于0,是否可以判断函数在0点双邻域内的单调性

不能,例子如:f(x)=x^2sin(1/x)+0.5xifx≠00ifx=0由定义知道f'(0)=1/2>0,然而f(x)在0的任一领域内均不单调(导函数在0的任一领域内不保号)

函数在x0的某邻域U有定义 且在x0可导 对任意x f(x)小于等于f(x0) 证明f'(x0)=0

http://baike.baidu.com/link?url=aaw6msJKZ4dkGw072b4vWespkfzWCtHstS1TNQZvqCAbe4GdkpJ90F2fCR_ZcMtNQzy3