若在点x的某邻域函数大于0,且极限为A则必有A大于0,这句话对不对
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:11:02
你是想说“若函数在某点导数大于0,则该函数在该点的某小邻域上单调递增”吧?看如图例子,那么在0的任何邻域内,函数不单调啊
首先,通过观察分子分母,发现是0/0型,使用L'Hospital法则原式=lim{(e^x-1-x)^2/[(sinx)^4+4x(sinx)^3cosx]}e^x在x=0处Taylor展开有e^x=
f(x)在x0的邻域内泰勒展开,有:y=f(x0)+f'(x0)(x-x0)+f"(x0)(x-x0)^2/2!+f"'(x0)(x-x0)^3/3!+.因为f'(x0)=f"(x0)=0,所以y=f
结论错误.如f(x)=x,x0=0,此时a=0.若改成a>=0结论就对了.再问:怎么证明了?我想了好久也不会证明。请给些帮助再答:结论错误你还证明什么?已经给你反例了。再问:证明你说的A大于等于0的结
由limx→0,y→0f(x,y)-xy(x2+y2)2=1知,因此分母的极限趋于0,故分子的极限必为零,从而有f(0,0)=0;因为极限等于1;故f(x,y)-xy~(x2+y2)2(|x|,|y|
这个是不能的.考虑函数f(x)定义如下f(x)=x^(3/2)·sin(1/x)+xx≠0f(x)=0x=0在x=0处的情况.(任意领域都不单调是因为其导数在0点的任意领域即能取正值,又能取负值)
不能.比如黎曼函数,狄利克雷函数等
有定义就是指这个函数有具体的表达式,也可以是抽象的形式,也可以是具体的形式,总是有定义就是你要规定这个函数到底是什么样的函数.当然它必须满足函数的定义.
不能确定极值,要通过左右的点的值来判断是否是极值点
用单变元的微分中值定理做估计.|f(x,y)-f(x0,y0)|
有点难,以前学过的,现在好像忘记了.建议你看一看课本例题.
极限的局部保号性.用极限定义:取ε=1,必存在x0的某邻域,当x在该邻域内(x不等于x0),恒有:3-ε0
函数在某一点的导数大于0,并不能保证函数在该点的某个邻域内单增,例如以下反例:它在x=0处的导数大于0,但在x=0的任何邻域内都不单调,函数图象如下:事实上,函数在一点x0处的导数大于0,只能保证在x
选B高数同济五版上册155页定理3(第二充分条件)当F(X0)的二阶导数=0,F(X0)可能为F(X)极小值、极大值、也可能没有极值因此必要条件不成立,选B充分条件
这个不能确定吧再答:�Ͼ���֪������再问:f'��x0����0�����再答:����ĵ㵹��С������ߵ�������再问:�������Ӧ��ֻҪ���ھͿ����˰�����Ϊf'
设f(xo)=a≠0.∵函数f(x)在点x0连续,∴对于ε=|a|/2>0存在δ>0当x∈﹙x0-δ,x0+δ﹚=U(x0)时|f(x)-f(xo)|<ε.即x∈U(x0)-|a|/2<f(x)-a<
不能,例子如:f(x)=x^2sin(1/x)+0.5xifx≠00ifx=0由定义知道f'(0)=1/2>0,然而f(x)在0的任一领域内均不单调(导函数在0的任一领域内不保号)
http://baike.baidu.com/link?url=aaw6msJKZ4dkGw072b4vWespkfzWCtHstS1TNQZvqCAbe4GdkpJ90F2fCR_ZcMtNQzy3