若圆o的内接三角形abc中角c等于20度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 17:22:07
若圆o的内接三角形abc中角c等于20度
同问三角形abc中,AB=AC,O为三角形ABC内的一点,若角ABO=角ACO,说明三角形OBC为等腰三角形

∵AB=AC,∴∠ABC=∠ACB,又∵∠ABO=∠ACO,∴∠ABC-∠ABO=∠ACB-∠ACO,即∠OBC=∠OCB,∴△OBC是等腰三角形.

三角形abc是圆o的内接三角形

三角形ABC是圆O的内接三角形,AC=BC,D为圆O中弧AB上一点,延长DA至点E,使CE=CD,1.求证AE=CD;2.若AC⊥BC,求证AD+BD=√2CD1.连接BD因为AC=BC所以角B=角C

如图,△ABC是圆O的内接三角形,AC=BC,D为圆O中弧AB上的一点,延长DA至点E,是CE=C

∵CD=CE,∴∠CDA=∠CEA∵弧AC=弧BC,∴∠CDA=∠CDB,∴∠CEA=∠CDB∵ADBC四点共圆,∴∠CAE=∠CBD∵AC=BC,∴△ACE=△BCD,∴AE=BD,∠ACE=∠BC

一道数学题.如图在圆O的内接三角形ABC中,AB=AC=2倍根号3,且圆心O到C的距离为1,则弦BC的长为?

过0作AC,AB垂线,分别垂足分别为M、N,连接OA,OC,OB,由OA=OC=OB=1,直角三角形AOM斜边为1,一直角边为根号3,可知角OAM=30度,所以角BAC=60度,所以三角形ABC为等边

如图所示,三角形ABC为圆O的内接三角形,AB=1,角C=30度,则圆O的内接正方形的面积为多少?

连接AO,BO则∠AOB=60度(同弧所对圆心角,是其圆周角的2倍),即△AOB是等边三角形,即圆半径等于1其内接正方形边长等于根号2即内接正方形面积为2

已知在三角形ABC中,角C=90度,AC=3 BC=4 圆O内切与三角形ABC 求三角形ABC在圆O外部的面积,..

根据勾股定理可得AB=5△ABC的内切圆半径为r=(3+4-5)/2=1所以内切圆面积=π因为△ABC的面积=1/2*3*4=6所以所求面积为6-π

AC*BC=AE*AD 三角形ABC内接于圆O,AE是圆O的直径,AD是三角形ABC中BC边上的高

分析:求线段的比,可以考虑用相似三角形对应边成比例来求;首先寻找相似三角形△AEC与△CBD,然后根据相关判定条件寻找解答即可.证明:连接EC,∴∠B=∠E.∵AE是⊙O的直径,∴∠ACE=90°.∵

三角形ABC内接于圆O中,角A=30度,BC=3

直接用正弦定理a/sinA=b/sinB=c/sinC=2R(a、b、c分别表示三角形的三边,A、B、C分别表示a、b、c三边所对的角,R表示三角形外接圆半径)BC/sinA=2R3/sin30°=2

不好意思,没图1.在三角形ABC中,角C=90°,O为三角形内一点,若S△OAB=S△OCA,求证:OA的平方+OB的平

设BC=aAC=bAB=cO到BCACAB的垂线垂足分别为DEFDO*BC=1/3*(AC*BC)=1/3abOD=1/3bCE=ODAE=2/3b同样OE=1/3aCD=OEBD=1/2aOA^2=

已知在三角形ABC中,角C=90度,AC=3 BC=4 圆O内切与三角形ABC 求三角形ABC在圆O外部的面积

6-π再问:过程啊。。。。。。。。。。。。再答:先求小圆的面积,(3+4+5)*半径=3*4/2半径为1三角形面积减圆面积就是上面的

如图三角形ABC是圆O的内接三角形,ac=bc,c为圆o中弧ab上一点,延长da至点e,使ce=cd,求证ae=bd.

(1)因为CA=CB,所以弧CA=弧CB,所以∠CDE=∠CAB(同弧所对圆周角相等)又因为CE=CD,CA=CB,所以两等腰三角形底角都相等,可以得到∠ACB=∠ECD,所以∠ECA=∠DCB,又因

三角形ABC内接与圆O,AB=AC,角AOC=135度,圆O的半径为根号2,求三角形ABC的面积

延长AO与BC交于M因为AB=ACAM⊥BC∠AOC=∠AOB=135∠BOC=90OB=Oc=√2BC=2,OM=1AM=√2+1面积=√2+1

如图.三角形ABC内接于圆O,P,B,C在一直线上,且PA的平方=PBXPC,求证:PA是圆O的切线

PA^2=PB*PC,PA/PB=PC/PA,<APB=<CPA,△APB∽△CAP,<PAB=<ACP,∴PA是圆O的切线.(圆外切割线逆定理). 若要继续证明,则

在平面直角坐标系中,三角形abc是圆o的内接三角形

到三个顶点的距离相等的,就是内接三角形,你可以将三个顶点到对边中点的连线相交,就是这个外接圆的圆心.

斜三角形 三角函数以至圆O的半径为R,在它的内接三角形ABC中,有2R(sin平方A-sin平方C)=(根号二再乘以a再

∵2R(sin平方A-sin平方C)=(根号二再乘以a再减b)sinB∴由正旋定理得a^2-c^2=√2ab-b^2∴由余旋定理得cosC=(a^2+b^2-c^2)/2ab=√2/2∴C=π/4,A

在圆O的内接三角形ABC中,AB+AC=12

连接AO并延长交圆O于点E,连接BE,由上述结论可知AB•AC=AD•AE因为AB+AC=12,AB=x所以AC=12-x所以(12-x)•x=3×2y,所以y与x

已知三角形ABC中,O是三角形ABC内一点,向量OA+OB+OC=0,判断o是三角形ABC的重心还是外心,说明理由

设A,B,C坐标为(x1,y1),(x2,y2),(x3,y3)点O坐标(x,y)OA+OB+OC=0x1-x+x2-x+x3-x=0y1-y+y2-y+y3-y=0x=(x1+x2+x3)/3y=(

(2014•台山市模拟)如图,△ABC是⊙O的内接三角形,AC=BC,点D是⊙O中弧AB的上的一点,延长DA至点E,使C

(1)∠CBA=∠CDA或∠CAB=∠CBA等;(2)证明:∵AC=BC,CE=CD,∴∠CAB=∠CBA,∠E=∠CDE,又∠CBA=∠CDE,∴∠ACB=∠ECD;∵∠ACB-∠ACD=∠ECD-

圆o的内接三角形abc,

证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B