若向量组线性无关,则其中可能含有零向量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:40:40
若向量组线性无关,则其中可能含有零向量
向量组线性无关的充要条件是向量组所含向量的个数等于它的秩,

相关知识点:向量组的秩等于向量组的极大无关组所含向量的个数极大无关组是一个线性无关的部分组,向量组中任意向量可由极大无关组线性表示向量组线性无关向量组本身是一个极大无关组向量组的秩=向量组的极大无关组

向量组a1a2a3线性无关

(b1,b2,b3)=(a1,a2,a3)KK=101220033因为|K|=12≠0所以K可逆所以r(b1,b2,b3)=r(a1,a2,a3)=3所以b1,b2,b3线性无关.怎么让证线性相关呢?

大学线性代数的题目:证明,若向量组A+B,B+C,C+A线性无关,则向量组A,B,C也线性无关

由题知,对任意的不全为零的K1,K2,K3.都使得K1(A+B)+K2(B+C)+K3(C+A)≠0,即A(K1+K3)+B(K2+K1)+C(K3+K2)≠0,由于K1,K2.K3是任意不全为零的数

证明:若一个向量组线性无关,则它的任何一个部分向量组也线性无关.

反证法:若某一个部分向量组线性相关,则原向量组线性相关设原向量组为x1,x2……xn,如果某个部分向量组线性相关比如x1,x2,x3,就是说a1*x1+a2*x2+a3*x3=0时,a1,a2,a3,

若向量组a1,a2,a3,a4线性无关,向量组a1,a2,a3也线性无关怎么证明?

一起帮你复制过来,嘿嘿.反设a1,a2,a3线性相关,必然存在不全为0的k1,k2使得a3=k1*a1+k2*a2,必然有不全为0的系数k1,k2,k3(k3=0),使得a3=k1*a1+k2*a2+

如果向量组线性无关,证明向量组线性无关.

k1*a1+k2(a1+a2)+k3(a1+a2+a3)+...+ks(a1+a2+...+as)=(k1+k2+..+ks)a1+(k2+k3+...+ks)a2+...+ks*as=0因为a1,a

证明向量组线性无关

可参考:http://zhidao.baidu.com/question/280278707.html

设向量组a1,a2,a3线性无关,则下列向量组线性相关的是

这是个常用结论:若C=AB,A列满秩,则R(C)=R(B)请参考:

线性相关选择题2题:设向量组a1,a2,a3,a4线性无关,则有 A a1,a3,a4线性无关 B a1,a4线性无关&

C注:A可以线性相关,只要a1,a2线性无关就行Ba1a4线性相关跟这四个向量线性无关没关系D前后正负关系,肯定线性相关D注:秩为2所以A可以先向相关,跟a3线性相关都可以,只要跟a4别线性相关.B不

求证一个线性相关的定理 设向量组N是M的子集,若M线性无关,则N线性无关.这个怎么证明?

反证,若n线性相关,写出来,带入m,其他的为0,可得到m线性相关!

设向量组a1.a2.a3.线性无关,则下面向量组中线性无关的是

一.因为这样运算能使它们的和为0,因而可以判断线性无关.如果能找到其他一组系数使它们的和为0也可以说明问题.二.这要靠自己的经验的,没有一定的规则的.三.这个书上有的,一组向量无关,就不存在一组系数不

已知向量组a1,a2,a3线性无关则下列向量组中线性无关的是?

仅供参考若向量组a1,a2,a3线性无关则满足k1*a1+k2*a2+k3*a3=0的充要条件为k1=k2=k3=0例如E=a1+2a2,a3设未知量p1,p2p1(a1+2a2)+p2*a3=0换成

知向量组A1,A2,A3线性无关,则下列向量组线性无关的是?

选C对于A:(A1+2A2)+(A3-A1)=2A2+A3,线性相关对于B(A1-2A2)+2(A2-A3)=-(2A3-A1),线性相关对于D,(A1-A2)+(A2+2A3)=2A3+A1,线性相

证明如果向量组线性无关,则向量组的任一部分组都线性无关

证明,用反证法,设有向量组a1,a2,a3,a4,…,an线性无关,同时,设其中向量a1,a2,a3,a4,…,aj线性相关,j

已知向量组a1,a2,a3线性无关,若向量组a1+a2,a2+a3,λa1+a3线性无关,则λ满足?

(a1+a2,a2+a3,λa1+a3)=(a1,a2,a3)KK=10λ110011|K|=1+λ由已知r(K)=r(a1+a2,a2+a3,λa1+a3)=3所以λ≠-1.再问:那个行列式是怎么得

若向量a1,a2线性无关,而a1,a2,a3线性相关,则向量组a1,2a2,3a3的极大线性无关组为

首先,因为a1,a2线性无关,则a1,2a2也线性无关;其次,因为a1,a2,a3线性相关,则存在实数x、y使a3=xa1+ya2,因此3a3=3xa1+3ya2=(3x)a1+(3y/2)*(2a2

证明:若n阶矩阵A的列向量线性无关,则A^2的列向量也线性无关.

A^2=AA假设有A^2x=AAx=0,则有Ax=0,R(A)=n,所以x只有零解,所以有A^2*0=0,所以R(A^2)=n,故矩阵A^2的列向量线性无关

线性代数线性无关问题已知向量组a1,a2,a3,a4,线性无关,则以下线性无关的向量组是( )A.a1+a2,a2+a3

A假设a1+a2,a2+a3,a3+a4,a4+a1线性相关,则存在不全为零的k1、k2、k3、k4,使得k1(a1+a2)+k2(a2+a3)+k3(a3+a4)+k4(a4+a1)=0即(k1+k

设n维列向量a1a2a3...am线性无关,则n维向量组b1b2.bm线性无关的充要条件

矩阵等价则矩阵的秩相同所以r(b1,...,bm)=r(B)=r(A)=r(a1,...,am)=m所以b1,...,bm线性无关

证明:若n阶矩阵A的列向量线性无关,则A^2的列向量也线性无关.

楼上看错了吧,是线性无关,不是线性相关.其实很容易,方阵A的列线性无关等价于det(A)非零,也等价于det(A^2)=det(A)^2非零.