若函数fx在(1, ∞)区间上单调减

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:16:45
若函数fx在(1, ∞)区间上单调减
已知函数fx=1/x²+1.判断函数fx在区间(0+∞)上的单调性并证明.求fx在区间[1,

解判断函数fx在区间(0+∞)上单调递减设x1,x2属于(0,正无穷大)且x1<x2则f(x1)-f(x2)=1/(x1^2+1)-1/(x2^2+1)=(x2^2-x1^2)/(x1^2+1)(x2

已知函数fx=3^x-x^2 求方程fx+0在区间[-1,0]上实数个数

设在区间[-1,0]内有m>n,则f(m)-f(n)=(3^m-m^2)-(3^n-n^2)=(3^m-3^n)+(n^2-m^2)∵0≥m>n≥-1,∴(3^m-3^n)>0,(n^2-m^2)>0

已知fx是定义在R上且周期为3的函数,当x属于【0,3)时,fx=|x^2-2x+1/2|若函数y=fx-a在区间【-3

你先把f(x)图像画出来,零点就是f(x)=a时候的解,就是y=a这条直线和你画出来的图像的交点,有10个,应该有对称的

已知函数fx=x^2/2+lnx 求fx在区间(1,e)上的最大值最小值

1先对f(x)求导,它在(1,e)上递增2构造一个函数F(x)=g(x)-f(x),再对F(x)求导,可得到F(x)在区间内递增,即只需证明F(1)>0即可

在r上定义的函数fx是偶函数且fx=f(2-x)若fx在闭区间1,2是减函数则函数fx

f(x)=f(2-x)=f(x-2)所以f(x)是周期为2的偶函数因为在闭区间1,2是减函数所以在闭区间3,4上也是减函数

已知函数fx=x2+ax+3-a在区间[-2,2]的最小值为函数g(a),若a=1求函数fx在此区间上的值域

题目出错了吧?应该是当g(a)=1求f(x)的值域吧?再问:就是a=1再问:再答:原来有三问啊,这样啊,给我点时间我给你做了吧再问:我们正在考试你速度再答:(1)[(7/4),8](2)g(x)=-3

设函数fx=(ax+1-a)e的x次方,(1)求函数fx的单调区间;(2)若fx≥0在区间【1,2】上恒成立,求实数a的

1f'(x)=ae^x+(ax+1-a)e^x=(ax+1)e^x当a=0时,f'(x)=e^x>恒成立∴f(x)的单调递增区间为(-∞,+∞)当a>0时,由f'(x)>0得ax+1>0∴x>-1/a

已知函数fx=x2+ax+2,a属于R,若函数gx=fx+x2+1在区间(1,2)上有两个不同的零点

由于f(x)=x²+ax+2,并且g(x)=f(x)+x²+1,那么可以得到g(x)=2x²++ax+3,如果g(x)在区间(1,2)上有两个零点,那么有如图所示回答:

已知数数fx=ax+lnx,(1)当a=-1时,求函数fx的单调区间(2)若fx在区间(0,e]上的最大值为-3,求实数

(2)若f(x)在区间(1,e]上的最大值为-3,求a的值a>=0时,f(x)=ax+lnx>0所以a

已知函数fx=x2+bx+c.且f1=0.若b=0,(1)求函数fx在区间【-1.3】上的最值 (

你好!第一问:由题意得0=1+0*1+cc=-1所以函数为f(x)=x^2+bx-1画出图像,抛物线开口向上,最小值为x=0时,y=-1第二问:由f(x)=x^2+bx-1可知抛物线的对称轴为:x=-

设函数fx=(ax-1)/(x+1),其中∈R,若fx在区间(0,+∞)上是单调递减函数,求a的取值范围

若f(x)在(0,+∞)上的单调减函数,求a的取值范围f(x)=(ax-1)/(x+1)=(ax+a-a-1)/(x+1)=[a(x+1)-(a+1)]/(x+1)=a-(a+1)/(x+1)为保证f

已知函数f(x)=x+1分之x,且属于[2,5]试用单调性定义证明fx在区间[2,5]上是增加的.

设x1,x2是函数区间[2,5]内任意值,那么不妨令x1<x2,则:f(x1)-f(x2)=x1/(x1+1)-x2/(x2+1)=(x1-x2)/(x1+1)X(x2+1)因为2≤x1<x2≤5所以

函数单调性:fx=根号下(x平方+1)-ax,证明a大于等于1时在区间(0,+无穷大)上单调递减

任取X1小于X2属于(0,+无穷大)fx1-fx2=更号下x1的平方+1-aX1-更号下X2+aX2因为X1小于X2,切a大于1所以fx1-fx2大于0即fx1大于fx2所以函数在区间(0,+无穷大)

设函数fx=x²/2-klnx k>0 证明:若fx存在零点,则fx在区间(1,√e)上仅有

答案如图所示,友情提示:点击图片可查看大图答题不易,且回且珍惜如有不懂请追问,若明白请及时采纳,祝学业有成O(∩_∩)O~~~