若函数fx=x^2-ax-3在(1, ∞)上是增函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:35:37
f'(x)=3x²-2ax+3=0在[1,+∞)上是增函数,有两种可能:(1)3x²-2ax+3恒≥0∆=4(a²-9)≤0,-3≤a≤3(2)3x²
(1)函数f(x)=1/3x^3-(a+1)/2x^2+ax在R上单调递增函数的导数f‘(x)=x^2-(a+1)x+a在R上恒>=0该导函数为一条开口向上的抛物线,在R上恒>=0也就是与x轴最多有一
解由函数fx=x^3-x^2+ax+b若函数fx在x=1处取得极值知f'(1)=0由f'(x)=3x^2-2x+a即f‘(1)=3-2+a=0解得a=-1即f(x)=x^3-x^2-x+b得f'(x)
因为x>0所以f’(x)=-a=令f’(x)==0,解得x=1 所以1:当a>0时得表格所以f(x)的单调增区间为(0,1],单调减区间为[1,+∞)2:当a<0时得
解析如下:f′(x)=x(1-a-ax)x+1,x∈(-1,+∞).依题意,令f'(2)=0,解得a=13.经检验,a=13时,符合题意.…(4分)①当a=0时,f′(x)=xx+1.故f(x)的单调
对函数求一次导,令其大于0,即1/(2-x)+a>0,a>1/(x-2)1/ax-2的最小值为-2,但取不到所以1/a
f(x)=ax^2+x-xlnx(a>0)定义域是x>0f'(x)=2ax+1-lnx-1 =2ax-lnxf(x)在定义域上是单调函
这是复合函数求导么首先把ab分别带入fx得到fx=-x³+2接着对(2x+1)求导得到2,对fx求导得到-3x²,再利用复合函数求导法则得到答案-8x³-3x²
因为等式两边同除以一个式子,则必须保证这个式子不能等于0而x-1是有可能等于0的,所以不能随便的约去(x-1)(x²+x+1)-3(x-1)=0提取公因式x-1得到(x-1)(x²
f(x)=-x^2+ax+lnx+b,f'(x)=-2x+a+1/x,由已知得,f(1)=2,所以-1+a+b=2,--------(1)同时f'(1)=0,所以-2+a+1=0,-------(2)
a=1时,f(x)=x^3+x^2-xf'(x)=3x^2+2x-1极值点f'(x)=0解得x=1/3或x=-1f'(x)从负无穷到正无穷的值先正再负再正所以f(x)有极大值f(-1)=1,极小值f(
请稍等再答:首先f'(x)=3ax²-3,所以g(x)=ax^3+3ax²-3x-3,则g'(x)=3ax²+6ax-3由已知,g(x)在[0,2]上递减,所以在[0,2
再问:第一问为什么是之间,而不是正负无穷再答:我怎么觉得我写的是不是之间呀==
f(x)=ax^3+3x^2+3x(a≠0),f'(x)=3ax^2+6x+3,△/4=9-9a,1)i)a
首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/
希望对你有所帮助 再问:请问当a属于(0,e)是怎样证明e平方x的平方-2分之5x大于(x+1)lnx呢?再答:我刚才还以为你 就问2问呢 嘿嘿 加油~~若可以
答:f(x)=x^2+ax,g(x)=lnxy=f(x)-g(x)=x^2+ax-lnxy'=2x+a-1/x因为:y''=2+1/x^2>0所以:y'=2x+a-1/x是增函数y在[1,2]上是减函
f'(x)=3x^2+3(a-1)x-3a=3(x+a)(x-1)=0,得极值点x=-a,1讨论a:若a