若函数fx=a 3 与gx=1 的图象关于直线y
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:32:12
很高兴为你虽然f(x),g(x)表达式一样,但定义域不同,是两个不同的函数那么:f(x)=x^2-2x=(x-1)^2-1,表示开口向上,顶点在(1,-1),对称轴为x=1的抛物线,因此函数f(x)在
选C,假设在x0>0处函数取得最大值,令x
f(x)=loga(x+1),f(x)的定义域为x>-1g(x)=loga(1-x),g(x)的定义域为x
/>设f(x)=ax²+bx+c,因为f(0)=0+0+c=1,所以f(x)=ax²+bx+1,所以f(x+1)-f(x)=a(x+1)²+b(x+1)+1-(ax
f到底是e的x^2次方还是x^2/e呢?我就按照后者计算了.首先,定义域(0,+∞)F(x)=x^2/e-2alnxF'=2x/e-2a/xa≤0时,F‘>0,F单调递增,无最值a>0时,F在(0,√
令F(x)=G(x),解得x=2(-6舍去)由题意求出F(x)和G(x)的较小的,画出互相可知,当3/2≤x≤2时,F(x)≥G(x),当x>2时,F(x)<G(x)
f'(x)=g'(x)∴f'(x)-g'(x)=0∴f(x)-g(x)为常函数选B再问:怎么由第二步推出第三步的?~再答:令h(x)=f(x)-g(x)则:h'(x)=f'(x)-g'(x)=0∴h(
由已知函数f(x)=lnx,定义域x>0;函数g(x)=ax2/2+bx,若a=-2,那么g(x)=-x2+bx;所以函数h(x)=f(x)–g(x)=lnx–(-x2+bx)=lnx+x2–bx,定
g’(x)=(lnx-1)/(lnx)^2f’(x)=g’(x)-a因为函数f(x)在(1,+∞)上为减函数,故当x>1时,f’(x)≤0恒成立,即g’(x)≤a恒成立,令h(x)=g’(x)由h(x
解由曲线fx与gx在公共点A(1,0)处有相同的切线知曲线fx与gx相较于A(1,0)即把A(1,0)代入函数gx=ax^2-x即g(1)=a-1=0即a=1故g(x)=x^2-x求导得g'(x)=2
x+1>0=>x>-1①3x+2>0=>x>-2/3②g(x)>=f(x)=>g(x)-f(x)>=0即log2[(3x+2)/(x+1)]>=0所以(3x+2)/(x+1)>=1解得x>=-1/2③
1)h(x)=2x=f(x)+g(x)1)以-x代入x,得:h(-x)=-2x=f(-x)+g(-x),因f(-x)=f(x),g(-x)=-g(x),所以此式化为:-2x=f(x)-g(x)2)1)
1.g(x)+f(x)=x^(1/2)----(1).g(x)-f(x)=x^(-1/2)---(2).(1)+(2):2g(x)=x^(1/2)+x^(-1/2).g(x)=(1/2)[x^(1/2
(1)函数在y轴上的截距即为x=0时的函数值f(x)与g(x)的截距相等,则有f(0)=g(0)即|0-a|=|a|=0+0+1=>a=1(a为正实数)∴a的值为1(2)设h(x)=f(x)+g(x)
此题书写上就权当fx就是f(x)f(x)3/4
1.∵f(x)=x分之lnx+a∴f'(x)=(1-lnx-a)/x^2令f'(x)=0,得驻点x=e^(1-a).x=e^(1-a)时,极大值f(x)=1/(e^(1-a))=e^(a-1)2.①∵
答:f(x)=x^2+ax,g(x)=lnxy=f(x)-g(x)=x^2+ax-lnxy'=2x+a-1/x因为:y''=2+1/x^2>0所以:y'=2x+a-1/x是增函数y在[1,2]上是减函
f(x)=g(x)+h(x)f(-x)=g(-x)+h(-x)=-g(x)+h(x)两式相减得:g(x)=[f(x)-f(-x)]/2故有:g(x)=(a+1)xg(x)在x
f'(x)=1/xk=f'(1)=1f(1)=ln1=0故在X=1处的切线方程是y-0=1*(x-1),即有y=x-12.设P坐标是(a,b)g'(x)=2(m+1)x-1有相同的切线,则有g'(a)