若函数fx=2x² (x-2a)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:32:50
若函数fx=2x² (x-2a)
已知函数fx=x^3-ax^2+3x,若fx在x∈【1,正无穷)上是增函数,求实数a的取值范围

f'(x)=3x²-2ax+3=0在[1,+∞)上是增函数,有两种可能:(1)3x²-2ax+3恒≥0∆=4(a²-9)≤0,-3≤a≤3(2)3x²

已知函数fx)=lnx+a/x,若f(x)

设g(x)=x^2-f(x)求g'(x)=2x-1/x+a/x^2通分有g'(x)=(2x^3-x+a)/x^2考虑其在(0,+∞)上单调性若2x^3-x+a>=0则g(x)最小值满足g(x)>0即可

已知函数fx=-x∧3+ax∧2+b (1)若a=0b=2 求Fx=(2x+1)fx的导数

这是复合函数求导么首先把ab分别带入fx得到fx=-x³+2接着对(2x+1)求导得到2,对fx求导得到-3x²,再利用复合函数求导法则得到答案-8x³-3x²

已知函数fx=X^2+2x+a X>=0 fx恒成立 a的取值范围

F(x)=X^2+2x+a>0对x≥0时恒成立,a>-X^2-2x=-(x+1)²+1而二次函数-(x+1)²+1在[0,+∞)上是减函数,当x=0是取到最大值0,所以a>0.

已知函数fx=x2+a/x(x不等于0)若fx在X属于【2,+00】上为增函数,求a的取值范围

x^2=x*xf(x)=x^2+a/xx*x导数=2x1/x导数=-1/x^2∴f(x)导数=2x-a/x^2在x属于【2,+∞】上,f(x)为增函数,∴f(x)导数≥0,2x-a/x^2≥02x≥a

已知函数fx=(x-a)|x-2|,gx=2根号x+x-2

(1)对a进行分类讨论:a=2时f(x)在R上单调增加;a《2时x《(a+2)/2时单调增加,(a+2)/2《x《2时单调减小,x》2时单调增加;a》2时x《2时单调增加,2《x《(a+2)/2时单调

已知函数fx=-2/2^x-a+1 若fx>=-2^x在x>=a上恒成立,求实数a的取值范围

因为f(x)>=-2^x等价于-2/2^x-a+1>=-2^x等价于2^(2x)-(a-1)2^x-2>=0令y=2^x所以不等式等价于y^2-(a-1)y-2>=0而要求不等式在x>=a上恒成立,所

已知函数fx=(-2)/{2^(x-a)+1} 若fx≥-2^x在x≥a上恒成立,求a的取值范围

因为f(x)>=-2^x等价于-2/2^(x-a)+1>=-2^x等价于2^(2x-a)+2^(x-a)-2>=0而要求不等式在x>=a上恒成立,所以要求2^(2x-a)+2^(x-a)-2在x>=a

若函数fx满足关系式fx+2fx分之1=3x则f

(1) 等式化简后:f(2)=±(√19/2)+3

已知函数fx=x2+a/x(x不等于0)若fx在X属于【2,+00】上为增函数,求a的取值范围

f'(x)=2x-a/x²f(x)在[2,+∞)上是增函数,从而f'(x)≥0对于x∈[2,+∞)恒成立.即a≤2x³,x∈[2,+∞)从而a≤(2x³)min,x∈[2

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

设函数fx=x^3+ax^2-a^2x+m若a=1时函数fx有三个不同的零点

(1)对f(x)求导得:f(x)'=3x^2+2ax-a^2解得两个极值点分别为:x1=-a,x2=a/3当a=0时:x1=x2=0,故此时f(x)在R上都不存在极值点,满足条件.当a≠0时:考虑到x

已知函数fx=x+a^2/x-3,gx=x+lnx,其中a>0,Fx=fx+gx

1.先对Fx求导,由题意知F`(1/2)=0可得出a的值2.由F`(x)=2a^2,再根据x的范围可解

已知函数fx=3x,x≤1 -x,x>1若fx=2则x等于

当x≤1时f(x)=3x=2x=2/3当x>1时f(x)=-x=2x=-2因为x>1,所以则时无解所以x=2/3再问:那个是3x方再答:额.f(x)=3x^2=2x^2=2/3x=±√6/3±√6/3

已知函数fx=lnx-ax2+(2-a)x 讨论fx单调性.

f(x)=lnx-ax²+(2-a)x,x>0f′(x)=1/x-2ax+2-a=[-2ax²+(2-a)x+1]/x=(2x+1)(1-ax)/x=(2+1/x)(1-ax)因为

已知函数fx=lnx+2a/x+1

1、对lnx知,x>0对f求导得:f'=1/x-2a/(x^2)f'>=0时,x>2a如果a0,无单减区间如果a>=0,则f的单增区间为x>=2a,此时单减区间为0

已知函数fx=-x的平方+4x+a,x属于[0,1],若fx的最小值为-2,则fx的最大值是多少

解f(x)=-x²+4x+a=-(x²-4x)+a=-(x²-4x+4)+4+a=-(x-2)²+4+a对称轴为x=2,开口向下∴在x∈[0.1]上,f(x)是

函数fx=x^2-alnx a属于R

答:f(x)=x^2-alnx,x>0;f'(x)=2x-a/x1)当a=0,f(x)是增函数.