若函数fx=1-根号x 1,gx=ln(ax^2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:57:40
选C,假设在x0>0处函数取得最大值,令x
/>设f(x)=ax²+bx+c,因为f(0)=0+0+c=1,所以f(x)=ax²+bx+1,所以f(x+1)-f(x)=a(x+1)²+b(x+1)+1-(ax
f(x)=x^2+mg(x)=0.5^x-m对任意-1≤x1≤3,存在0≤x2≤2,使得fx1≥gx2则f(x1)在[-1,3]上的最小值大于等于g(x)在[0,2]上的最大值f(x)在[-1,3]上
f到底是e的x^2次方还是x^2/e呢?我就按照后者计算了.首先,定义域(0,+∞)F(x)=x^2/e-2alnxF'=2x/e-2a/xa≤0时,F‘>0,F单调递增,无最值a>0时,F在(0,√
令F(x)=G(x),解得x=2(-6舍去)由题意求出F(x)和G(x)的较小的,画出互相可知,当3/2≤x≤2时,F(x)≥G(x),当x>2时,F(x)<G(x)
因为x1与x2独立,所以原命题就是:f(x1)(min)≥g(x2)(MAX)f'(x)=x²+2x-3令f'(x)=0==>x=1,x=-3,当x0所以函数f(x)在【0,2】上先减后增;
(1)∵f(x)是奇函数,g(x)是偶函数∴f(-x)=-f(x),g(-x)=g(x)∵f(x)-g(x)=1/(x+1)①∴f(-x)-g(-x)=1/(1-x)-f(x)-g(x)=1/(1-x
(1)对a进行分类讨论:a=2时f(x)在R上单调增加;a《2时x《(a+2)/2时单调增加,(a+2)/2《x《2时单调减小,x》2时单调增加;a》2时x《2时单调增加,2《x《(a+2)/2时单调
有点复杂啊,没有悬赏的话最好分次问(1)f(x)=x²-alnxf'(x)=2x-a/x=(2x²-a)/x∵f(x)在[1,2]上递增∴(2x²-a)/x≥0恒成立即2
∵g(x)=x/lnx,f(x)=g(x)-ax∴f(x)=x/lnx-ax=x(1/lnx-a)当x=e时,f(x)=e(1-a),当x=e^2时,f(x)=e^2(1/2-a),当x1=e时,f(
g’(x)=(lnx-1)/(lnx)^2f’(x)=g’(x)-a因为函数f(x)在(1,+∞)上为减函数,故当x>1时,f’(x)≤0恒成立,即g’(x)≤a恒成立,令h(x)=g’(x)由h(x
解由曲线fx与gx在公共点A(1,0)处有相同的切线知曲线fx与gx相较于A(1,0)即把A(1,0)代入函数gx=ax^2-x即g(1)=a-1=0即a=1故g(x)=x^2-x求导得g'(x)=2
x+1>0=>x>-1①3x+2>0=>x>-2/3②g(x)>=f(x)=>g(x)-f(x)>=0即log2[(3x+2)/(x+1)]>=0所以(3x+2)/(x+1)>=1解得x>=-1/2③
1)h(x)=2x=f(x)+g(x)1)以-x代入x,得:h(-x)=-2x=f(-x)+g(-x),因f(-x)=f(x),g(-x)=-g(x),所以此式化为:-2x=f(x)-g(x)2)1)
1.g(x)+f(x)=x^(1/2)----(1).g(x)-f(x)=x^(-1/2)---(2).(1)+(2):2g(x)=x^(1/2)+x^(-1/2).g(x)=(1/2)[x^(1/2
x的平方减x加1分之一——到底是怎样的一个分式?也就是说,分式的分子是什么,分母是什么!?只说思路,简化过程!已知:f(x)+g(x)=……,得到一个表达式①又f(-x)+g(-x)=,得到另一个表达
此题书写上就权当fx就是f(x)f(x)3/4
答:f(x)=x^2+ax,g(x)=lnxy=f(x)-g(x)=x^2+ax-lnxy'=2x+a-1/x因为:y''=2+1/x^2>0所以:y'=2x+a-1/x是增函数y在[1,2]上是减函
f(x)=g(x)+h(x)f(-x)=g(-x)+h(-x)=-g(x)+h(x)两式相减得:g(x)=[f(x)-f(-x)]/2故有:g(x)=(a+1)xg(x)在x