若函数f(x)=Asin(3x-π 6) B(A>0)的最大值为5,最小值为-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:30:59
f(5π/12)=Asin(5π/12+π/4)=Asin(2π/3)=A*√3/2,(√为根号)=3/2A=√3f(θ)+f(-θ)=3/2√3sin(θ+π/4)+√3sin(-θ+π/4)=3/
(1)T=2pi/3,3是x前面的系数(2)最大值为A,所以A=4f(x)=4sin(3x+9)(3)f(2/3α+12/5)=12/54sin(2α+36/5+9)=12/5sin(2α+81/5)
已知函数f(x)=Asin(ωx+φ)图像如图求f(x).答:f(x)=2sin(150°x+90°)由图可见,A=2f(x)=2sin(ωx+φ)f(2)=2sin(2ω+φ)=√3-->2ω+φ=
函数f(x)=Asin(X+φ)(A>0)在x=π/2处取得最小值,即sin(π/2+φ)=-1所以φ=-π.f(3π/4-X)=Asin(3π/4-X-π)=Asin(-x-π/4).所以它既不是奇
答:f(x)=sin²x+sin2x+3cos²x=sin²x+cos²x+sin2x+2cos²x利用二倍角公式cos2x=2cos²x-
f(x+pai/6)=Asin(2x+pai/3+a)=Acos(pai/6-a-2x)pai/6-a=2kpai,pai/6-a=2kpai+paif(x)=Asin(2x+pai/6-2kpai)
最小正周期是T=2π/(π/3)=6.设S点坐标为(4,0),则三角形QRS为含π/6的直角三角形,RS=√3QS=√3A=3,A=√3.
A=22sinφ=√3φ=π/3w*(5π/6)+π/3=π或w(5π/6)+π/3=2πw=4/5w=2f(x)=2sin【(4/5)x+π/3】f(x)=2sin(2x+π/3)-π/2
(1)若a>0,sin(2x+π/3)的单调递增区间就是f(x)的单调递增区间令2kπ-π/2
f(x)=2a+b-acos2x-a√3sin2x=2a+b-2a(cos2xcosπ/6+sin2xsinπ/6)=2a+b+2asin(2x+π/6)a>=0,
y=sinx最小正周期是2π水平移动和上下伸缩不影响周期,只有在水平伸缩时影响周期,这里是缩小到1/3所以f(x)=Asin(3x+a)最小正周期是2π/3f(x)=sinx最小正周期是2π水平移动和
答:f(x)=asin(x+π/3)+sin(x-π/6)f(-x)=asin(-x+π/3)+sin(-x-π/6)=-asin(x-π/3)-sin(x+π/6)=f(x)=asin(x+π/3)
A=4,3*(π/12)+φ=π/2+2kπ(k∈Z)解得φ=π/4+2kπ又0
已知函数f(x)=Asin(2ωx+φ)(x∈R,ω>0,02ω=2==>ω=1所以,f(x)=Asin(2x+φ)图中未标识最值,不仿设A=2f(0)=Asin(φ)=1==>φ=arcsin(1/
(1)a=2,w=2f(x)是偶函数故f(0)=2或-2所以sinf=1或-1所以f=π/2+kπ(k是整数)0
(1)因为最大值为2+m说明A=2,最大最小值之间的最小距离为π/2,所以W=1所以在x取(-π/4,π/6)时,f(x)最大=f(π/12)=2+mf(x)最小=f(-π/4)=-1+m所以m=2(
f(X)=asin^3x+bsinx+1f(x)-1=asin^3x+bsinx是奇函数因此f(3)-1=asin^3(3)+bsin3=3所以f(-3)-1=asin^3(-3)+bsin(-3)=
答:f(x)=1-(1/2)cos2x+asin(x/2)cos(x/2)=1-1/2+sin²x+a(sinx)/2=(sinx+a/4)²-a²/16+1/2当对称轴
(1)由函数的最小值为-2及A>0得:A=2;又函数经过(0,跟号3),所以,sin(φ)=根号3得:φ=π/3+2kπ或φ=2π/3+2kπ(k为整数)由|φ|0得:A=2;又函数经过(0,跟号3)