若函数f(x)=2asin(2x φ)的值域为[-2,2]且在区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:03:00
设函数f(x)=Asin(wx+q),(A=/0,w>0,-pai/2
f(5π/12)=Asin(5π/12+π/4)=Asin(2π/3)=A*√3/2,(√为根号)=3/2A=√3f(θ)+f(-θ)=3/2√3sin(θ+π/4)+√3sin(-θ+π/4)=3/
(1)显然A=1将点M(π/6,√3/2)带入得√3/2=sin(π/3+φ)解得φ=π/3所以f(x)=sin(2x+π/3)显然其值域为[-1,1](2)根据2kπ+π/2
f(x+π/6)=Asin(2x+φ+π/3)是偶函数所以φ+π/3=kπ+π/2又0再问:为什么φ+π/3=kπ+π/2再答:cosa是偶函数,这样sin才可化为cos或者你也可利用偶函数的定义来求
不懂得可以追问哦,再问:"|PN||MN|cos∠PNM=π/2|NC|"这步为啥再答:P在x轴上的射影为C,再问:答案我都看过了,这一步不懂而已。原理?再答:MN的长度就是根据函数图象得到的
∵0≤x≤π2,∴π6≤2x+π6≤7π6,∴-12≤sin(2x+π6)≤1.①当a>0时,2asin(2x+π6)∈[-a,2a],得2asin(2x+π6)+a+b∈[b,3a+b]∴b=−53
f(x+pai/6)=Asin(2x+pai/3+a)=Acos(pai/6-a-2x)pai/6-a=2kpai,pai/6-a=2kpai+paif(x)=Asin(2x+pai/6-2kpai)
最大值由A决定最大值2所以A=2f(x)=2sin^2(ωx+φ)sin^2这个函数每个周期内有两个对称轴所以T=4T=π/|ω|ω>0所以ω=π/4f(x)=2sin^2((π/4)x+φ)将(1,
最大值是3,则A=3.函数周期是π,则2π/w=π,w=2.f(x)=3sin(2x+α)当x=π/6时f(x)取得最大值3,则3=3sin(π/3+α),π/3+α=π/2,α=π/6.∴f(x)=
已知函数f(x)=Asin(wx+a)(A>0,w>0,-π/20,w>0,-π/2π/3+a=π/2==>a=π/6∴f(x)=3sin(2x+π/6)单调增区间:2kπ-π/2x0=0==>2x0
Asin『2(x+30度)+B』=Asin(2x+60度+B)因为是偶函数所以要换成Acos(90度-2x-60度-B)=Acos(30度-2x-B)30度-B=0+2kπ因为B<π所以B=30度把x
函数f(x)=Asin(2x+b)(A>0,0
f(x)>=f(5n/12)成立就是x=5n/12时sin(2x+a)有最小值2*5n/12+a=3n/2a=2/3*nf(x)=Asin(2x+a)=Asin(2x+2/3*n)f(x)=0sin(
0≤x≤π-π/4≤x-π/4≤3π/4sin(x-π/4)∈【-√2/2,1】ab=3最小值√2a*1+a+b=2------>a=-1/(√2+1)=1-√2a=1-√2,b=3
f(x)=2a+b-acos2x-a√3sin2x=2a+b-2a(cos2xcosπ/6+sin2xsinπ/6)=2a+b+2asin(2x+π/6)a>=0,
由这样的条件不能同时确定φ,a,b吧?函数f(x)=2asin(2x+φ)+a+b(0
已知函数f(x)=Asin(2ωx+φ)(x∈R,ω>0,02ω=2==>ω=1所以,f(x)=Asin(2x+φ)图中未标识最值,不仿设A=2f(0)=Asin(φ)=1==>φ=arcsin(1/
y=f(x)的最大值为2得A=2相邻两对称轴的距离为2得周期为4,f(x)=Asin^2(wx+fai)=A[1-cos(2wx+2fai)]/22π/2w=4w=π/4f(x)=2sin^2(π/4
(1)因为最大值为2+m说明A=2,最大最小值之间的最小距离为π/2,所以W=1所以在x取(-π/4,π/6)时,f(x)最大=f(π/12)=2+mf(x)最小=f(-π/4)=-1+m所以m=2(