若任意一个n维向量都是n元齐次线性方程组AX=0的解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:39:31
若任意一个n维向量都是n元齐次线性方程组AX=0的解
一个线性代数n维向量问题

a1=1*a1+0*a2a2=0*a1+1*a2有不懂欢迎追问

证明:若P^n中任意非零向量都是数域P上n级矩阵A的特征向量,则A必为数量矩阵

Ae1=a1e1,Ae2=a2e2,...,Aen=anen,其中a1,a2,...,an是特征值,e1,e2,...,en是单位阵的n个列,于是有AE=ED,其中D是对角元为a1,a2,...,an

证明方程组AX=0的任意n-r个线性无关的解向量都是它的一个基础解系.

反证.若有n-r个线性无关的解向量a1,...,an-r不是AX=0的基础解系由基础解系的定义知至少有一个解向量b不能由a1,...,an-r线性表示因此a1,...,an-r,b线性无关这与AX=0

线性代数n维行向量乘n维列向量结果为什么说是一个数?

矩阵是一个数表,只不过矩阵的运算给这个数表赋予了各种实际的意义.比如代表方程组的系数,表达向量间的线形关系等等.那么他既然本质就是个数表,他们各项分别相乘相加最后就得到一个数啦那么1*1的矩阵当然就是

若p^n中任意一个非零向量都是数域p上n阶矩阵a的特征向量,则a必为数量矩阵.如何证明?

首先,因为属于不同特征值的特征向量的和不是特征向量所以A的特征值为k,k,...,k(即k是A的n重特征值)再由n维基本向量组ε1,ε2,...,εn是特征向量所以(ε1,ε2,...,εn)^-1A

设A为n阶正定矩阵,x为任意一个n维实向量,证明不等式0

0是可以取到的,除非要求x非零非负这部分显然,只要知道正定矩阵的逆也正定即可小于1这部分可以用Shermann-Morrison公式:(A+xx')^{-1}=A^{-1}-A^{-1}xx'A^{-

设a1,a2,a3,...an是n维列向量空间Rn的一个基,A是任意一个n阶可逆矩阵,证明:n维列向量组

证:设k1Aa1+k2Aa2+...+knAan=0则A(k1a1+k2a2+...+knan)=0因为A可逆,等式两边左乘A^-1得--这一步是关键k1a1+k2a2+...+knan=0又由已知a

设a1,a2...am是n维欧式空间V的一个标准正交向量组,证明:对V中任意向量a有 ∑(a,ai)^2

将a1,a2...am扩充为V的标准正交基a1,a2...am,...,an任一向量a可表示为a=k1a1+k2a2+...+kmam+...+knan(a,ai)=ki||a||^2=(a,a)=(

设a1,a2,...,an是n维列向量空间R^n的一个基,A是任意一个n阶可逆矩阵,证明:n维列向量组Aa1,Aa2..

在n维欧氏空间中,任意n个线性无关的向量都可以作为空间的一组基在本题中,可逆矩阵的n个列向量线性无关,故可作为一组基

请问,线性代数中关于向量中,任何一个n+1个n维向量都是线性相关的,所以在实数域R上全体n维向量组成

都可以,看他是行向量还是列向量再问:哦,感谢!请问要是列向量呢?再答:行向量对应方程,列向量对应未知数。

一道线性代数习题证明对任意的m>n,存在m个n维向量,使得任意n个向量线性无关.是使其中任意n个都线性无关

可以举特例证明确实存在这么m个n维向量,如,以范德蒙行列式来构造m个n维列向量,在n阶范德蒙行列式的基础上增加至m列,n行矩阵,那么任意选择n个列向量的话,都构成范德蒙行列式,这样任选的n个向量线性无

N维向量 

再答:再答:

任意n+1个n维向量必线性

是啊假设他们非线性,那岂不N+1维了

设任意一个n维向量都是方程组AX= 0的解.则r(a)为多少?ps请问这里的n维...

证明:因为任意一个n维向量都是方程组AX=0的解,所以AX=0的解空间的维数是n=n-r(A),所以r(A)=0.即A是零矩阵.n维向量是指n维向量空间R^n中的向量.

试证:若n维实向量p与任意n维实向量都正交,则p必为零向量

假设p为(a1,a2,a3,a4,...,an)既然对任意的实向量都正交,不妨取单位坐标向量(1,0,0,0,...,0)所以a1*1+a2*0+...+an*0=a1=0再取单位坐标向量(0,1,0

任意非零n维向量都是n阶数量矩阵A的特征向量 为什么

数量矩阵A即主对角线上元素相同,其余元素为0的方阵即kE.对任意非零n维向量x,Ax=kEx=kx所以x是A的属于特征值k的特征向量.

n维向量是什么意思

n维向量,有n个坐标分量,即n维空间中的向量例如平面是二维的,相当于二维向量例如立体是三维的,相当于三维向量

为什么n个线性无关的n维向量都是Rn的一组基?

因为Rn中的任意一向量均可由这n个线性无关的n维向量线性表出,故它是Rn的一组基.下面证明这一事实,设X是Rn中的任意一向量,a1,a2,...,an是n个线性无关的n维向量,由Rn中任意n+1个向量