若任意一个n维向量都是n元齐次线性方程组AX=0的解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:39:31
a1=1*a1+0*a2a2=0*a1+1*a2有不懂欢迎追问
Ae1=a1e1,Ae2=a2e2,...,Aen=anen,其中a1,a2,...,an是特征值,e1,e2,...,en是单位阵的n个列,于是有AE=ED,其中D是对角元为a1,a2,...,an
反证.若有n-r个线性无关的解向量a1,...,an-r不是AX=0的基础解系由基础解系的定义知至少有一个解向量b不能由a1,...,an-r线性表示因此a1,...,an-r,b线性无关这与AX=0
只有线性无关组成的方阵才与单位阵等价.
矩阵是一个数表,只不过矩阵的运算给这个数表赋予了各种实际的意义.比如代表方程组的系数,表达向量间的线形关系等等.那么他既然本质就是个数表,他们各项分别相乘相加最后就得到一个数啦那么1*1的矩阵当然就是
首先,因为属于不同特征值的特征向量的和不是特征向量所以A的特征值为k,k,...,k(即k是A的n重特征值)再由n维基本向量组ε1,ε2,...,εn是特征向量所以(ε1,ε2,...,εn)^-1A
0是可以取到的,除非要求x非零非负这部分显然,只要知道正定矩阵的逆也正定即可小于1这部分可以用Shermann-Morrison公式:(A+xx')^{-1}=A^{-1}-A^{-1}xx'A^{-
证:设k1Aa1+k2Aa2+...+knAan=0则A(k1a1+k2a2+...+knan)=0因为A可逆,等式两边左乘A^-1得--这一步是关键k1a1+k2a2+...+knan=0又由已知a
将a1,a2...am扩充为V的标准正交基a1,a2...am,...,an任一向量a可表示为a=k1a1+k2a2+...+kmam+...+knan(a,ai)=ki||a||^2=(a,a)=(
在n维欧氏空间中,任意n个线性无关的向量都可以作为空间的一组基在本题中,可逆矩阵的n个列向量线性无关,故可作为一组基
都可以,看他是行向量还是列向量再问:哦,感谢!请问要是列向量呢?再答:行向量对应方程,列向量对应未知数。
可以举特例证明确实存在这么m个n维向量,如,以范德蒙行列式来构造m个n维列向量,在n阶范德蒙行列式的基础上增加至m列,n行矩阵,那么任意选择n个列向量的话,都构成范德蒙行列式,这样任选的n个向量线性无
再答:再答:
是啊假设他们非线性,那岂不N+1维了
证明:因为任意一个n维向量都是方程组AX=0的解,所以AX=0的解空间的维数是n=n-r(A),所以r(A)=0.即A是零矩阵.n维向量是指n维向量空间R^n中的向量.
假设p为(a1,a2,a3,a4,...,an)既然对任意的实向量都正交,不妨取单位坐标向量(1,0,0,0,...,0)所以a1*1+a2*0+...+an*0=a1=0再取单位坐标向量(0,1,0
数量矩阵A即主对角线上元素相同,其余元素为0的方阵即kE.对任意非零n维向量x,Ax=kEx=kx所以x是A的属于特征值k的特征向量.
n维向量,有n个坐标分量,即n维空间中的向量例如平面是二维的,相当于二维向量例如立体是三维的,相当于三维向量
因为Rn中的任意一向量均可由这n个线性无关的n维向量线性表出,故它是Rn的一组基.下面证明这一事实,设X是Rn中的任意一向量,a1,a2,...,an是n个线性无关的n维向量,由Rn中任意n+1个向量
1r(A)=R(A,b)