若三阶方阵A的伴随矩阵为A*,已知
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:57:54
n阶矩阵A与其伴随矩阵A*的关系如下若r(A)=n则r(A*)=n若r(A)=n-1则r(A*)=1若r(A)
因为|A*|=|A|^(4-1)=|A|^3=8所以|A|=2所以|2(A^2)^-1|=2^4/|A^2|=2^4/2^2=4
由已知,|A*|=0,A*(1,1,...,1)^T=3(1,1,...,1)^T所以r(A*)=1所以r(A)=n-1所以AX=0的基础解系含1个向量.因为AA*=|A|E=0所以3A(1,1,..
秩为0因为4阶矩阵A的秩为2,所以它的三阶子式一定全为0,(否则秩会为3)既然三阶子式全为0,那么按照伴随矩阵的定义:它的元素全为0,即为0矩阵.故秩为0
利用关系式|A*|=|A|^(n-1),可得知|A|=2.经济数学团队帮你解答,请及时采纳.
(kA)*=k^(n-1)A*
1.|A|=0奇数阶反对称矩阵的行列式等于02.|(3A)—18A*|=?中间怎么连接的(3A)^-18A*(3A)-8A*再问:(3A)^-18A*前面的减去后面的。再答:A*=|A|A^-1=(1
(1)证:如果r(A)
(A*) = 0.
直接可以用下面的公式
若A=abcd则A*=d-b-ca对照可得A=(1-2-12)
确实缺少条件A的伴随矩阵,通常就是用A右上角*表示的.有这样的关系:若A非退化,则A*(A伴随)=det(A)*E.E为单位矩阵.从而有det(A)*det(A伴随)=det(A)^n.所以det(A
设B为A的伴随矩阵,E为单位阵,AB=|A|E,|A||B|=|A|^n,|B|=|A|^(n-1)
A*=|A|A^(-1)=2A^(-1)由|A|=2知|A^(-1)|=1/2|3A*|=|6A^(-1)|=6³|A^(-1)|=6³×1/2=108A^(-1)表示A的逆矩阵
|A*|=|A|^(n-1)=2^2=4.证:A*=|A|A^(-1),得|A*|=|A|^n*|A^(-1)|=|A|^(n-1).
A乘以A^*等于对角线全是|A|的对角矩阵.所以|A*A^*|=|A|*|A^*|=|A|^n.所以|A^*|=|A|^n-1
这是一个基本公式,AA*=A*A=|A|E,其中E是单位阵.经济数学团队帮你解答,请及时采纳.
你说的结论是成立的,它是行列式的性质.本题如图.经济数学团队帮你解答.请及时评价.再问:|10A*|=|10A|*(10A)^-1=10^3|A|*1/10*A^-1=100我这算法错了吗?再答:第一