若一平面简谐波的表达式为y=Acos(Bt-Cx),式中A,B,C为正值常量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 00:12:59
由图可知波长为20,振幅是0.02,由于波速是5,故周期是4s,故角频率是2π/4=π/2,由于t=3s时x=0在负向位移最大处,且此波沿x轴正向传播,故可知t=0时x=0处质点在原点处且沿y轴正向运
x=0.24cos(wt+ψ)当t=0时,x=-0.12∴0.24cosψ=-0.12cosψ=-0.5ψ=(2π)/3或(4π)/3所以初相位为(2π)/3或(4π)/3
y=Acos(ωt+φ)根据“t=0时,坐标原点处的质点位于平衡位置沿y轴的正方向运动”画出示意图即可得出初相为-π/2
采用逆向爬坡法:如果题目给出的条件是P点速度向上,你先假设简谐波不动而是P点运动,P点为了速度向上,就要向左运动,那么简谐波就是向右传播;如果题目给出P点速度向下,你先假设简谐波不动而是P点运动,P点
t=0,x=0.1直接代入即可2/3pai
波动的过程是能量的传播过程.由于波的传播,介质中质点作振动,因此具有动能;与此同时,任何一个小体积元内,都发生压缩或伸张形变(纵波)或切形变(横波),因此具有形变势能在平面简谐波中,质元的动能和势能同
(1)将t=5带入波动方程:位移y=5cos(20-4x)cm.(2)将x=4cm带入波动方程:震动规律是:位移随时间变化的波动方程是:y=5cos(3t-10).(3)波速是波长除以周期,波长是两个
1、在t=1/2时刻,y=4.0×10^-2cos(πt-(π/2))=y=4.0×10^-2cos0º=4.0×10^-2m,该点处于最大位移处,速度为0.2、周期T=2s①若A在前B在后
根据微移法(由于波向右传播,将波形向右移动一小段距离,可以看到O点向下移动)或者“阴盛阳衰准则”(将波传播方向的箭头看做阳光照射的方向,波峰的两个面有一个面是正对阳光的,称为阳面,另一个背对的称为阴面
1)振幅:0.2周期:2π/0.4π=5波长:2π/(0.4π*1/0.08)波速=波长/周期2)即x=0时y=0.2cos[0.4πt+π/2]初相:π/2任一时刻的振动速度:对y=0.2cos[0
1),∵t=0时质元由平衡位置向正方向移动,∴设波函数为:f(x,t)=Asin[(2π/T)t-(2π/λ)x+φ],其中f(x,t)表示x处质点在t时刻的位移.只需确定初项φ,∵v=ðf/
这道题可以用旋转矢量法来求首先令两个波的方程中的x=λ/4,得到改点处的振动方程,然后在以振幅为半径,矢量起点为圆心的圆中,规定一个正方向,然后,找出各自振动方程的初相位,画好后,将两个矢量利用平行四
由振动图像知初相为-π/2而反射波在O点的相位落后2L的距离加一个半波,即反射波初相为φ=-π/2-2π*2L/d-π=π/2-4πL/d反射波往x负方向传播,故y=Acos(ωt+2πx/d+φ)=
波由原点传播到+x点所用时间为t'=x/v+x点在t时刻的振动情况(相位)与原点在(t-t')时刻的振动情况(相位)相同,故y(x,t)=y(0,t-t')=Acosw(t-t')=Acosw(t-x
求振动方程,二次对T求导,代入T再问:没听懂呵呵不是只有振动方程才二次求导吗?这个波动方程怎么转换为振动方程啊?再答:设振动方程的标准式,由波动方程可得点,代入可解振动方程..........
该质点的位移表示为:x=Asin(ωt+φ)=Asin(2π/T+φ)∵在这里,A=0.2m;T=4s;φ=0.∴x=0.2sin(2π/4)=0.2sin(π/2)
一平面简谐波沿0x轴传播==〉公式方向沿x轴正方向(波的方向可能变,看公式中的符号)原式可化为:y=5cos(8*(t+3x/8)+π/4)对比波的标准表达式ψ=Acos(w(t-x/u)+φ)w=2
假设时间由t=0经过Δt(Δt很小)后,即t=Δt对质点P,y=Asin5πt=y=Asin5πΔt其中,由于Δt很小且为正值,sin5πΔt>0,所以y的正负与A相同当A>0时,y>0,说明P在t=