若∝1,∝2,∝3线性无关

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:07:00
若∝1,∝2,∝3线性无关
设向量组α1,α2,α3线性无关,证明α1,α1+α2,α1+α2+α3也线性无关

这个不要反证,直接证明就可以了.证明:设k1α1+k2(α1+α2)+k3(α1+α2+α3)=0.则(k1+k2+k3)α1+(k2+k3)α2+k3α3=0因为α1,α2,α3线性无关所以k1+k

若α1,α2线性无关,证明α1+α2、α1-α2也是线性无关的.

假设α1+α2、α1-α2线性相关则存在不为0的常数b使得α1+α2=b(α1-α2)所以α1+α2=bα1-bα2因为α1,α2线性无关所以α1,α2的系数分别对应相等b=1,-b=1所以b不存在,

设向量组α1ā2ā3线性无关,证明:向量组ā1-ā2-ā3,ā2-ā3,ā3也线性无关

设有数k1,k2,k3满足等式:k1(ā1-ā2-ā3)+k2(,ā2-ā3)+k3ā3=0则有k1α1+(k2-k1)a2+(k3-k2)a3=0,由于向量组a1ā2ā3线性无关,所以有k1=0,k

若向量组A:α1,α2,α3线性无关,向量β1能由A线性表示,向量β2不能由A线性表示,则必有

证:假设a1,a2β2相关那么存在不全为0的数u,v,w使得ua1+va2+wβ2=0那么w≠0,不然w=0,有a1,a2无关可以推出u=v=0,这就意味着a1,a2β2线性无关w≠0时β2=-ua1

线性代数的一点疑惑?若α1,α2,α3线性无关,且不能由β1,β2,β3线性表出,那么为什么β1,β2,β3一定线性相关

知识点:n个n维向量线性无关的充要条件是任一n维向量都可由它线性表示所以,当存在向量α不能由β1,2,3线性表示时,它一定线性相关再问:那如果把题目中的3都改为4维是不是就不一定线性相关啦?再答:是的

判断向量组a1=(1,1,-1,1),a2=(1,-1,2,-1),a3=(3,1,0,1)是线性相关还是线性无关?

构建行列式,就行列式值,该行列式值为0,是线性相关的a2-a1=(0,-2,3,-2),a3-3*a1=(0,-2,3,-2),及a2-a1=a3-3a1,所以是线性相关的

证明:若α1.α2线性无关,则α1+α2,α1-α2也线性无关.

只须证明它们能互相线性表示即可.显然a1+a1,a1-a2能用a1、a2线性表示;同时,a1=[(a1+a2)+(a1-a1)]/2,a2=[(a1+a2)-(a1-a2)]/2,所以a1+a2、a1

若a1,a2线性无关,而a1,a2,a3线性相关,求向量组a1,2a2,3a3的极大无关组

因为a1,a2线性无关,而a1,a2,a3线性相关所以a3可由a1,a2线性表示,所以a3可由a1,2a2线性表示.又由a1,a2线性无关,所以a1,2a2线性无关(否则a1,a2线性相关).故a1,

线性代数 设α1,α2,α3 线性无关 问以下向量组是否线性无关?

本体有特殊性,可以写出从α到β的系数行列式,由于α是线性无关的,故只需要系数行列式不为零,β就无关,否则相关.再问:首先谢谢哈其次再问一下给的向量组是无关的那么系数行列式不等0β就无关那要是给的向量组

如果向量组∝1,∝2,…,∝s,呈线性无关,试证:向量组∝1,∝1+∝2,…,∝1+∝2+…+∝s线性无关.

设k1x1+k2(x1+x2)+.ks(x1+.xs)=0有(k1+.ks)x1+(k2+...ks)x2+.ksxs=0由于原向量组线性无关k1.+ks=0k2+.ks=0..ks=0推出ki=0(

设向量组α1,α2,α3线性无关,证明:向量组α1+α3,α2+α3,α3也线性无关.

A=(α1,α2,α3)B=(α1+α3,α2+α3,α3)则B=AKK=100010111|K|=1,所以K可逆,从而A与B的秩相等因为α1,α2,α3线性无关,所以A的秩为3从而B的秩也为3,从而

向量组α1,α2,α3,α4线性无关,α1,α2,α3,α5线性相关,试证明向量组α1,α2,α3,α4-α5线性无关

因为α1,α2,α3,α4线性无关所以α1,α2,α3线性无关,且α4不能由α1,α2,α3线性表示又因为α1,α2,α3,α5线性相关所以α5可由α1,α2,α3线性表示所以α4-α5不能由α1,α

设向量组α1,α2,α3线性无关,证明:向量组α1-a2-2α3,α2-α3,α3也线性无关.

设b1=a1-a2-2a3,b2=a2-a3,b3=a3,因此b1、b2、b3可以用a1、a2、a3线性表出,而a3=b3,a2=(a2-a3)+a3=b2+b3,a1=(a1-a2-2a3)+(a2

若向量a1,a2线性无关,而a1,a2,a3线性相关,则向量组a1,2a2,3a3的极大线性无关组为

首先,因为a1,a2线性无关,则a1,2a2也线性无关;其次,因为a1,a2,a3线性相关,则存在实数x、y使a3=xa1+ya2,因此3a3=3xa1+3ya2=(3x)a1+(3y/2)*(2a2

证明:若α1,α2线性无关,则α1+α2,α1-α2也线性无关

反证假如α1+α2,α1-α2也线性相关则存在不全为0的k1k2使得k1(a1+a2)+k2(a1-a2)=0(k1+k2)a1+(k1-k2)a2=0因为k1k2不全为0,所以(k1+k2)和(k1

证明:若n阶矩阵A的列向量线性无关,则A^2的列向量也线性无关.

A^2=AA假设有A^2x=AAx=0,则有Ax=0,R(A)=n,所以x只有零解,所以有A^2*0=0,所以R(A^2)=n,故矩阵A^2的列向量线性无关

证明α1+α2,α2+α3,α3+α1线性无关的充要条件是α1,α2,α3线性无关

要证明α1+α2,α2+α3,α3+α1线性无关只需证明[α1+α2,α2+α3,α3+α1]的秩为3.这是我的一种证法,希望对你有帮助,祝学习愉快

证明向量组a1=(0,1,1),a2=(1,2,3),a3=(2,3,4) 线性无关.

3个3维向量线性无关的充要条件是它们构成的行列式不等于0因为行列式011123234=1≠0所以a1,a2,a3线性无关

证明:若n阶矩阵A的列向量线性无关,则A^2的列向量也线性无关.

楼上看错了吧,是线性无关,不是线性相关.其实很容易,方阵A的列线性无关等价于det(A)非零,也等价于det(A^2)=det(A)^2非零.

设a1、a2线性无关,a1+b a2+b线性相关,求b由1,2线性表示的表达式

因为a1+ba2+b线性相关,所以存在不全为零的数k1,k2(不妨设k1≠0),使得k1(a1+b)+k2(a2+b)=0(k1+k2)b=-k1a1-k2a2这儿k1+k2≠0,如果=0,则0=-k