若n阶矩阵满足A2-2A-4A=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:11:57
证明:设a是A的特征值,则a^2+2a是A^2+2A的特征值而A^2+2A=0,零矩阵的特征值只能是0所以a^2+2a=0所以a(a+2)=0所以a=0或a=-2即A的特征值只能是0或-2.
假设 λ 为A的特征值,因为A3+A2+A=3E,所以 λ3+λ2+λ-3=0.即 (λ3-1)+(λ2-1)+(λ-1)=0,得(λ-1)(λ2+2λ+3)=0.解得,
:设a是A的特征值.则a^5-2a^4+5a^3-8a^2-9是A^5-2A^4+5A^3-8A^2-9E的特征值.而A^5-2A^4+5A^3-8A^2-9E=0,零矩阵的特征值只能是0所以a^5-
显然x^2-3x+2是A的一个零化多项式,无重根,这说明A的极小多项式无重根,因此A可对角化.而A的特征值全为1,说明A相似于单位阵E.所以A=P^{-1}EP=E
题目错了,应该是0或1.设Ax=λx,x是非零向量,则0=(A^2-A)x=(λ^2-λ)x,于是λ^2-λ=0,从而λ=0或1.我看到你连续问了好几道基本的问题,建议你好好看看书,这些已经是最简单的
可以的是R(A)+R(A-E)=n提示:A*(A-E)=0所以(A-E)是AX=0的解
A²-5A+6E=E(A-2E)(A-3E)=E所以A-2E可逆其逆矩阵为A-3E再问:(A-2E)(A-3E)=A²-5AE+6E^2。不等于A²-5A+6E=E再答:
A2-5A+5E=A2-5A+6E-E=(A-2E)(A-3E)-E=O(A-2E)(A-3E)=E矩阵A-2E可逆,其逆矩阵=A-3E
设λ是A的特征值,所以Aα=λα.α≠0是对应的特征向量.上式两边左乘上A,得到;(A^2)α=Aλα=λAα=(λ^2)α因为A^2=A,所以(A^2)α=Aα所以(λ^2)α=λα[(λ^2)-λ
A+2A-3E=0,3A=3E,A=E.
因为A^2-A+E=0所以A(A-E)=-E所以A可逆,且A^-1=-(A-E)=E-A
两侧的括号省略设A=abbca,bc均为实数.A^2=AA=ababbc乘bc按定义:AA=a^2+b^2ab+bcab+bcb^2+c^2由已知:A^2=0,即各元素均为0.得:a^2+b^2=0,
A^2+2A+3E=0A(A+2E)=-3E(A)^-1=-(A+2E)/3运算符号不对的话,自己修正.
要证明E-2A可逆我们可以假设其可逆,并设其逆为aE+bA则(E-2A)(aE+bA)=E那么aE+(b-2a)A-2bA^2=E又A^2=A那么(a-1)E-(b+2a)A=0所以a-1=0,b+2
题目告诉你(A+I)(A-3I)=I即A+I可逆且其逆为A-3I
A²+3A-2E=0,所以A²+3A=2E,即A(A+3E)=2E,于是A(A/2+3E/2)=E,显然A为n阶方阵,而A和A/2+3E/2是同阶方阵,而两者相乘为E,所以由逆矩阵
(结论应该是rank(A)+rank(A-I)=n,否则是错的.例:取A=I,则A^2=I=A,但rank(A)+rank(A+I)=rank(I)+rank(2I)=n+n=2n)证法一:令U={x
这样处理:设λ是A的特征值则λ^2-λ是A^2-A的特征值由A^2-A=0,零矩阵的特征值只能是0所以λ^2-λ=0即λ(λ-1)=0所以A的特征值为0或1.
(A)=n,说明矩阵A时可逆矩阵,因此A可以写成一系列初等矩阵的乘积,设A=p1*p2ps,相当于对矩阵A做了一系列的初等列变换,而初等列变换不改变矩阵的秩,因此r(A*A)=r(A)其实还可以简单点
A*(A-2E)/(-3)=E,故A的逆为-1/3*(A-2E)