若n阶矩阵A满足方程A²+2A+3E=0,求A

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:46:21
若n阶矩阵A满足方程A²+2A+3E=0,求A
1、已知n阶矩阵A满足方程A^2-A+I=0,A^(-1)= PS:是I不是1

1.两边同时乘发A^(-1),得 A-E+A^(-1)=0,则A^(-1)=E-A2.∵a1,a2,a3都是2维向量,向量组个数3>2∴该向量组线性相关3.∵向量组的个数=向量组的秩=

求解【线性代数】 设A是n阶矩阵, ⑴若A满足矩阵方程A²-A+I=O,证明:A和I-A都可逆,并

2题的解法一样 根据要证明可逆的矩阵凑积=单位矩阵的多项式 2题过程如下图: 

设A为n阶矩阵,且满足方程3A^-2A+4I=0.证明A与3A+2I均可逆

由已知,A(3A-2E)=-4I所以A可逆,且A^-1=(-1/4)(A-2E).再由3A^-2A+4I=0得A(3A+2I)-(4/3)(3A+2I)+8/3I=0所以(A-(4/3)I)(3A+2

设N阶矩阵A满足A^2-2A+3E=0 ,则秩A=N

对.A(A-2E)=-3E,A可逆,A^(-1)=-(A-2E)/3

若n阶矩阵A满足A^2-A+E=0,证明A为非奇异矩阵

因为A^2-A+E=0所以A(A-E)=-E所以A可逆,且A^-1=-(A-E)=E-A

线性代数:若n阶矩阵A满足方程A^2 2A 3E=0,则(A)^-1=?

A^2+2A+3E=0A(A+2E)=-3E(A)^-1=-(A+2E)/3运算符号不对的话,自己修正.

已知n阶对称矩阵A(未必可逆)满足A^=2A,证明A-I是正交矩阵

A^2=2A说明A的特征值只可能是0或者2,所以A-I的特征值就是1或-1再利用实对称阵正交相似于对角阵得到A-I是正交阵另一种做法是直接算出(A-I)(A-I)^T=I,但上面的方法也应该掌握

线性代数:若n阶矩阵A满足方程A^2+2A+3E=0,则(A+3E)^-1=?

等于-1/6(A-E)?再问:有没有详细过程,怎么最后还得加个问号~~~那是确不确定啊再答:配方原方程化为(A+3E)(A-E)+6E=0把6E放到等号那边两侧同乘-1/6就有了再问:好的,谢谢~~~

设n阶矩阵A满足A^2+2A+3I=0,则A的逆矩阵?

因为A^2+2A+3I=0所以A(A+2I)=-3I所以A可逆,且A^-1=(-1/3)(A+2I).

线性代数:若n阶矩阵A满足方程A^2+2A+3E=0,则(A-2E)^-1=?

A^2+2A+3E=(A-2E)(A+4E)+11E=0即(A-2E)(A+4E)=-11E所以(A-2E)^(-1)=-1/11(A+4E)另外再说句,做这种题的技巧,就是配凑法,配成要求因式×另一

若N阶矩阵A满足A^2-2A-3I=0,则矩阵A可逆,且A^-1=____

A^2-2A-3I=0即A(A-2I)=3I即A*(A-2I)/3=I,所以选D再问:第一步提了个A出来威慑么2后面会有个I?再答:因为这是矩阵相乘2A=2A*I,任何矩阵与单位矩阵的乘积不变.再问:

n阶矩阵A满足A²-3A+2E=0,-证明A-3E是可逆矩阵

刚看到因为A^2-3A+2E=0所以A(A-3E)=-2E所以A-3E可逆,且(A-3E)^-1=(-1/2)A.

已知n阶矩阵A满足矩阵方程A^2-2A-3E=0,且A-E可逆,求A-E的逆矩阵?

因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).

若N阶矩阵满足A*A-2A-4I=0,试证A+I可逆,并求(A+I)的逆矩阵

题目告诉你(A+I)(A-3I)=I即A+I可逆且其逆为A-3I

n阶矩阵A满足A^2=A,求A的特征值?

这样处理:设λ是A的特征值则λ^2-λ是A^2-A的特征值由A^2-A=0,零矩阵的特征值只能是0所以λ^2-λ=0即λ(λ-1)=0所以A的特征值为0或1.

设A是n阶矩阵,若A满足矩阵方程A*A-A+I=0,证明:A和I-A都可逆,并求它们的逆矩阵

A*A-A+I=0所以A*(A-I)=-I所以|A*(A-I)|=|A|*|A-I|=|A|*|I-A|=|-I|0所以|A|,|I-A|都不等于0,所以A和I-A都可逆