若n阶矩阵A满足A^2 2A 3E=O,则A^-1为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:31:03
知识点:1.AB=0,则r(A)+r(B)
E+A^T=(E+A)^T两边取行列式|E+A^T|=|(E+A)^T|=|E+A|再问:甚妙甚妙!!!非常感谢!这个题我明白了。但是这个题里面A^T=A这个式子能不能成立呢?也就是说,已知AA^T=
n阶矩阵A满足A平方=A===>r(A)≤n当r(A)=n时,===>A=E===>r(A-E)=0===>r(A)+r(A-E)=n当r(A)A为至少有一行是全0的单位矩阵===>r(A)+r(A-
2题的解法一样 根据要证明可逆的矩阵凑积=单位矩阵的多项式 2题过程如下图:
A^3=3A^2-3A-A^3+3A^2-3A=0-A^3+3A^2-3A+I=I(I-A)^3=I所以,(I-A)[(I-A)^2]=I,即(I-A)(A^2-2A+I)=I,所以I-A可逆,且逆矩
A^2=A得到A(A-E)=0由r(A)+r(B)-n
也是对的,看一下Sylvester不等式
A+2A-3E=0,3A=3E,A=E.
因为A^2-A+E=0所以A(A-E)=-E所以A可逆,且A^-1=-(A-E)=E-A
A^2+2A+3E=0A(A+2E)=-3E(A)^-1=-(A+2E)/3运算符号不对的话,自己修正.
A^2=2A说明A的特征值只可能是0或者2,所以A-I的特征值就是1或-1再利用实对称阵正交相似于对角阵得到A-I是正交阵另一种做法是直接算出(A-I)(A-I)^T=I,但上面的方法也应该掌握
因为A^2+2A+3I=0所以A(A+2I)=-3I所以A可逆,且A^-1=(-1/3)(A+2I).
1证明:若矩阵A^2=I,A不等于I,则A+I不可逆.证明:首先因为A与A可乘(条件中由A^2),所以A是方阵(不妨设为n阶).因为A^2=I,所以(A+I)(A-I)=O,因为A≠I,所以A-I≠O
A^2-2A-3I=0即A(A-2I)=3I即A*(A-2I)/3=I,所以选D再问:第一步提了个A出来威慑么2后面会有个I?再答:因为这是矩阵相乘2A=2A*I,任何矩阵与单位矩阵的乘积不变.再问:
必须满足A有n个线性无关的特征向量---事实上这是A可对角化的充要条件或者A的k重特征值有k个线性无关的特征向量
刚看到因为A^2-3A+2E=0所以A(A-3E)=-2E所以A-3E可逆,且(A-3E)^-1=(-1/2)A.
题目告诉你(A+I)(A-3I)=I即A+I可逆且其逆为A-3I
(结论应该是rank(A)+rank(A-I)=n,否则是错的.例:取A=I,则A^2=I=A,但rank(A)+rank(A+I)=rank(I)+rank(2I)=n+n=2n)证法一:令U={x
这样处理:设λ是A的特征值则λ^2-λ是A^2-A的特征值由A^2-A=0,零矩阵的特征值只能是0所以λ^2-λ=0即λ(λ-1)=0所以A的特征值为0或1.
题中少写一个加号,可按下图证明.经济数学团队帮你解答,请及时采纳.谢谢!