若n阶矩阵A与B相似,则A与B的特征值相同,特征向量也相同

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:19:03
若n阶矩阵A与B相似,则A与B的特征值相同,特征向量也相同
若A,B均为n阶矩阵,且AB=BA,证明:如果A,B都相似于对角矩阵,则存在可逆矩阵C使C^1AC与C^1BC均为对角矩

A,B满足上述条件称为同时对交化.当且仅当A,B可交换,A,B可同时对角化.具体的证明,如果C^(-1)AC与C^(-1)BC均为对角矩阵,则C^(-1)ACC^(-1)BC=C^(-1)BCC^(-

设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵

终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是

刘老师,已知n阶矩阵A与上三角矩阵B=(bij)nxn相似,则A的特征值为?

相似矩阵有相同的特征值.所以A的特征值即B的特征值.又对角阵和上三角阵(或下三角阵)的特征值为对角元素.所以A的特征值为B的对角元素Bii

矩阵A与B相似,

相似矩阵有相同的迹和行列式所以有tr(A)=22+x=1+4=tr(B)得x=-17再计算行列式|A|=22*(-17)-31y=-374-31y|B|=4-6=-2所以-374-31y=-2得y=-

矩阵a与矩阵b相似,且a可逆,证明矩阵b可逆以及a^-1与b^-1相似

因为A,B相似所以存在可逆矩阵P使得P^-1AP=B由于A可逆,故B可逆(同阶可逆矩阵的乘积仍为可逆矩阵)且B^-1=(P^-1AP)^-1=P^-1A^-1(P^-1)^-1=P^-1A^-1P故A

矩阵相似问题n阶矩阵A和B有相同的特征多项式和最小多项式,问A与B是否相似?是则给出证明,不是则举出反例.感觉不一定相似

这个.特征多项式和最小多项式放一起也不是线性变换在不同基下的全系不变量.那么有没有全系不变量呢,有啊.就是若而当标准型,如果若而当标准型一样,那么绝对相似.找个反例就是往若而当标准型不一样但是特征多项

设A,B是n阶矩阵,且A可逆,证明AB与BA相似.

证明:由A可逆,有A^-1(AB)A=BA所以AB与BA相似.

A、B都是n阶Hermite 矩阵,证明:A与B相似的充要条件是它们的特征多项式相同

很是正常,因为在这个世界上,权倾一时炙手可热者太多,其无限风光让人望之兴叹;腰缠万贯富甲一方者甚众,其富豪做派可望而不可及;帅男靓女花容月貌倾国倾城者如过江之鲫,其知名度影响力与常人不可同日而语;这些

若n阶矩阵A的特征值为0,1,2.n-1,矩阵B与A相似,则|B+E|=

利用特征值可如图得到行列式等于n!.经济数学团队帮你解答,请及时采纳.

关于“若N阶矩阵A与B相似,则A与B的特征值多项式相同”证明的疑问

他说的是特征多项式相等!没有说矩阵相等!你可以看看特征多项式的定义:一个方阵X的特征多项式f(λ)就是|X-λE|.那么命题是完全正确的!您可能有些概念混淆了.首先行列式就是行列式,您在这里说的“行列

矩阵相似与合同问题n阶矩阵a和b相似,能否推出他俩合同? 如果合同能推出相似吗?

如果A和B是Hermite矩阵且相似,那么A和B合同,因为它们酉相似.实数域上类似.但是一般的域不保证.如果不是Hermite矩阵,那么相似不保证合同.无论如何合同是无法推出相似的,Hermite正定

线性代数 相似矩阵证明:如果A与B相似,则A‘与B’相似

因为A与B相似,所以存在可逆矩阵P,满足P^(-1)AP=B等式两边转置,得P'A'[P^(-1)]'=B'.因为[P^(-1)]'=(P')^(-1)所以P'A'(P')^(-1)=B'令Q=(P'

设A,B均为n阶实对称矩阵,证明:A与B相似

因为A,B都是实对称矩阵,故他们都可以对角化.B他们有相同的特征值他们的特征多项式相同右边.

线性代数(同济5版),关于相似矩阵的定理3证明不太懂.若N阶矩阵A与B相似,则A与B的特征值多项式相同

1.行列式的性质:|AB|=|A||B|即乘积的行列式等于行列式的乘积给你个证明:不过你可能没学Laplace展开定理,它是行列式按一行(列)展开定理的推广.所以有|P^(-1)(A-λE)P|=|P

线性代数:设n阶矩阵A与B相似且可逆,则|A乘B逆|=?怎么算的?

A与B相似即存在可逆矩阵PA=PBP-1|A乘B逆|=|P||B||P-1||B-1|=|P||P-1||B-1||B|=1

设A,B是n阶实对称矩阵,则正确的是1:A与B等价,则A与B相似2A与B相似,则A与B合同3A与B合同则A与B相似

(2)正确即A与B相似,则A与B合同由于A,B是实对称矩阵,故A,B可正交对角化又由于A与B相似,故A,B有相同的特征值所以,A,B与同一个对角矩阵正交相似所以,A,B与同一个对角矩阵合同所以由合同的

设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则(  )

(1)对于选项A.若λE-A=λE-B,则:A=B,但题目仅仅是A与B相似,并不能推出A=B,故A错误;(2)对于选项B.相似的矩阵具有相同的特征值,这个是相似矩阵的性质,这是由它们的特征多项式相同决