若n阶方阵的行列式为0,则对任何的n维向量·组a1,a2,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:20:12
把第1到第n-1列均加到第n列,则第n列全为b,将b提出并按第n列展开,可得行列式=b(1A1n+1A2n…+1Ann)=a,所以A的第n列元素代数余子式之和为a/b举个三阶行列式的例子:A=1230
A/d再问:我也算的这么多再问:但答案不是这个再答:那是什么再问:后面还有个-3不知道怎么来的再答:矩阵-3?是不是答案错了再问:不知道,可能是吧,我到时问问老师再答:别忘了告诉我结果^O^再问:Ӧ�
可以.需注意:1.某行的K倍加到另一行时要左乘K,列变换时右乘K2.分块矩阵不满足对角线法则行列式0AmBn0=(-1)^mn|A||B|再问:你说的K是——可以和子块矩阵相乘的矩阵吗再答:是的!你对
根据抽屉原则,至少一行元素全为0行列式定义是所有不同行不同列的元素求积后累加而如果一行全为0,则上面每项都为0,所以行列式为0这是一个性质,但是这个性质只比定义多一步,你只要不直接用性质即可
|AB|=|A||B|=|B||A|=|BA|
1+xa≠0,可以知道aa'(a‘表示转置)也不会为0,而r(aa')<=r(a)<=1这说明aa‘的秩为1.这样aa'的特征值正好是n-1个0,有一个不
D正确.若AX=b有解,则有无穷多解但也可能无解所以D正确
有定理:若AB=0,A和B都不为零,则│A│=│B│=0证明:因为AX=0有非零解B,所以│A│=0同理YB=0有非零解A,所以│B│=0证毕据此,得到一个结论:若AB=0,则A,B至少有一个为0,否
这个书上有对任意的方阵A,B|AB|=|A||B|对于A的k次方,可以由归内法证明.k=1时,有|A|=|A|是显然的设k=n时成立,即|A^n|=|A|^n那么当k=n+1时|A^(n+1)|=|A
见下图,一些最基本的东西就不解释了,A和B位置互换不影响答案. 不好意思行变换次数数错了.前m行每行做m+n-1次行变换,共m行,一共m(m+n-1)=mn+m(m-1)次,所以系数是(-1
知识点:|AB|=|A||B|.因为|A||B|=|AB|=0所以|A|=0或|B|=0.
对的|A^n|=lA*A*A……Al=|A|*|A|*……|A|=|A|^n
选C,这个时候提取系数的话需要阶数的次方.
因为AB=0,则B的列向量都是齐次线性方程组AX=0的解.(知识点)又因为B不等于0,所以B至少有一列是非零列向量,这个列向量是AX=0的解.即AX=0有非零解,故A的行列式等于0.(知识点,A为方阵
错误.反例:A=100010000a1=(1,1,0)^T,a2=(1,2,0)^T则|A|=0,Aa1=a1,Aa2=a2线性无关.
太简单了如果第m行(列)为{am1,am2,...,amn}第n行(列)为{kam1,kam2,...,kamn}那么根据行列式的性质,第m行(列)乘以k再乘以-1加到第n行(列),则第n行就变为{0
1.不一定,因为方阵A经过三种基本初等行或列变换B,称A与B等价,单单第二种初等变换即乘以非零常数,即改变行列式值,所以一般情况下是不相等的2.若其中一个行列式为零,即R(A)=R(B)
充要条件A的行列式为0《=====》A的伴随矩阵的行列式为0可以参考伴随矩阵的秩的性质
用伴随阵与逆矩阵的关系可如图得到答案是2A.经济数学团队帮你解答,请及时采纳.
再问:,谢谢不好意解答有点误,,你可以举反例再答:可以反正法