若F(x)是F(x)的一个原函数,则有()成立
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:10:23
∫ƒ(x)dx=xe^(-x²)ƒ(x)=(1-2x²)e^(-x²)ƒ'(x)=2x(2x²-3)e^(-x²)∫
答:f(x)是sinx的原函数则f(x)=-cosx+C所以:f(x)的全体函数为-cosx+C,其中C为任意常数再问:哦哦!!是求f(x)的全体原函数再答:答:f(x)是sinx的原函数f(x)=-
f(x)=lnx+1f'(x)=1/x
e^(-x)是f(x)的一个原函数则[e^(-x)]'=f(x)=-e^(-x)所以∫xf(x)dx=∫-xe^(-x)dx是用分部积分=∫xe^(-x)d(-x)=∫xde^(-x)=xe^(-x)
1,xe^x是f(x)的一个原函数,即:∫f(x)dx=xe^x+C,所以∫f(3x)dx=1/3*∫f(3x)d(3x)=1/3*3xe^(3x)+C=xe^(3x)+C2,e^(-x^2)是f(x
sinX/X是F(x)的一个原函数得到F(x)=(xcosx-sinx)/x^2f(x)是F(x)的导数所以∫x*f(x)dx=∫xdF(x)=xF(x)-∫F(x)dx=(xcosx-sinx)/x
即∫f(x)=sinx/x+C∫f(sinx+1)cosxdx=∫f(sinx+1)d(sinx+1)=sin(sinx+1)/(sinx+1)+C
f(x)=-e^(-x)x^2f(lnx)dx==x^2*(-1/x)dx=-xdx=-1/2*x^2+c设t=lnx,x=e^tx^2f(lnx)dx=(e^t)^2*f(t)d(e^t)=e^2t
sin2x是f(x)的一个原函数所以∫f(x)dx=sin2x+C定积分就是就求原函数的集合,∫f(x)dx代表的意思是,求f(x)这个函数的原函数的集合.sin2x是f(x)的一个原函数,把sin2
把F(x)除过去,两边求导,得到f(x)平方=F(x)平方,分情况讨论下,两个简单的微分方程,得到f(x)=e^x或e^-x.给点分吧,手机打可不容易呢,
F(x)*G(x)=-1得G(x)=-1/F(x),两边求导,得G'(x)=F'(x)/(F(x))^1/f(x)=f(x)/(F(x))^(f(x))^=(F(x))^f(x)=F(x)或f(x)=
由F(X)是f(x)的一个原函数,G(X)是1/f(x)的一个原函数可得:G(X)=-F(X)^(-2)带入F(X)G(X)=-1可得:F(X)=1所以f(x)方程可以设f(x)=x+c(c为一个常数
令t=e^(﹣x),则:lnt=﹣x得:dt/t=﹣dx∫e^(-x)f'(e^-x)dx=∫t·f'(t)·[﹣(dt/t)]=﹣∫f'(t)dt=﹣f(t)+C
∫f(x)dx=sinxf'(x)=cosxf''(x)=-sinx所以∫x²f''(x)dx=∫x²(-sinx)dx=x²cosx-∫2xcosxdx=x²
∫f(x)dx=sinx+Cf(x)=(sinx)'=cosx∫xf'(x)dx=xf(x)-∫f(x)dx=xf(x)-sinx+c1=xcosx-sinx+c
=ex-1/2x^2
这里只要凑微分就可以了,不用分部积分的∫e^(-x)f[e^(-x)]dx=∫-f[e^(-x)]de^(-x)而F(x)是f(x)的原函数,所以再积分一次,得到∫e^(-x)f[e^(-x)]dx=
∫f(-x)dx=-∫f(-x)d(-x)=-F(-x)+C再问:����Ϊʲô���ԣ���f(-x)dx=-��F`(-x)dx=F(-x)+C再答:��ΪF'(-x)=-f(-x)�൱�ڸ��Ϻ
1.lnx+C2.-ln(1+cosx)+C3.sin3x+C4.-549/333^3积分中把(x^3-10)作为常数,t为积分量
定积分,=F(3+12)-F(2+12)选B