若bn=3an n- n(n 1)为递减数列,求
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:47:58
an/bn={[a1+a(2n-1))]/2}/{[b1+b(2n-1)]/2}=n{[a1+a(2n-1))]/2}/n{[b1+b(2n-1)]/2}=S(2n-1)/T(2n-1)=2(2n-1
An=[2n/(3n+1)]BnAn-1=[2n/(3n+1)]Bn-1lim(n→∞)an/bn=lim(n→∞)[An-An-1]/[Bn-Bn-1]=lim(n→∞)[2n/(3n+1)][Bn
∵{an}与{bn}是等差数列∴Sn=[n(a1+an)]/2Tn=[n(b1+bn)]/2∴Sn/Tn=(a1+an)/(b1+bn)∵等差数列{an}与{bn}的前n项和的比为2n:(3n+1)∴
S(2n-1)=(A1+A(2n-1))×(2n-1)/2=(A1+A1+(2n-2)d)×(2n-1)/2=(A1+(n-1)d)×(2n-1)=An×(2n-1)同理T(2n-1)=Bn×(2n-
S(2n-1)=(A1+A(2n-1))×(2n-1)/2=(A1+A1+(2n-2)d)×(2n-1)/2=(A1+(n-1)d)×(2n-1)=An×(2n-1)同理T(2n-1)=Bn×(2n-
19/31An/Bn=[a1+(n-1)d]/[b1+(n-1)s]=2n/3n-1对比得到:a1=2d=4b1=8s=6a10/b10=38/62=19/31
Sn=2nkTn=(3n+1)kliman/bn=lim[(Sn-Sn-1)/(Tn-Tn-1)]=lim[2nk-2(n-1)k]/[(3n+1)k-(3(n-1)+1)k]=lim2k/3k=2/
本题考查的是数列的性质a1+a2n-1=2an因为S2n-1=[(n+1)(a1+a2n-1)]/2=(n+1)anT2n-1=[(n+1)(b1+b2n-1)]/2=(n+1)bn所以an/bn=S
因为两个都是等比数列,所以前n项和是关于n的二次函数故An=cn(3n+1).Bn=cn(2n-1).所以ak/bk=(Ak-A(k-1))/(Bk-B(k-1))这样就能解出k来了
Sn/Tn=2n/(3n+1)(a1+a1+(n-1)*d1)/(b1+b1+(n-1)*d2)=2n/(3n+1)(2a1-d+n*d1)/(2b1-d2+n*d2)=2n/(3n+1)->2a1=
a(1)=S(1)=1,n>1,a(n)=S(n)-S(n-1)=n^2-(n-1)^2=2n-1,a(n)=2n-1,n=1,2,...b(n)=a(n)/3^n=(2n-1)/3^n,n=1,2,
当n≥2时,有bn=Tn-T(n-1)所以由6Tn=(3n+1)bn+2得6T(n-1)=(3(n-1)+1)b(n-1)+2上两式相减得6(Tn-T(n-1)=(3n+1)bn-(3n-2)b(n-
“an的通项公式为an+1”?1.a(n+1)=an+2an=a1+2(n-1)=2n+12.bn=an*3^n=(2n+1)*3^nTn=3*3^1+5*3^2+7*3^3++(2n-3)*3^(n
1.若两等差数列{an}{bn}的前n项和为AnBn,满足(An/Bn)=(7n+1)/4n+27则a11/b11的值?因为是等差数列,A21=21×a11,B21=21×b11所以a11/b11等于
∵数列{an}的通项为an=2n+1,∴a1+a2+…+an=2(1+2+…+n)+n=n(n+1)+n,∴bn=a1+a2+…+ann=n(n+1)+nn=n+2,∴数列{bn}的前n项和Sn=(1
因为这里的Sn和Tn只知道一个比值,而不是Sn就等于2n,Tn就等于3n+1,所以如果要用an=sn-s(n-1),那么必须求出Sn【事实上这里的Sn=2n(假定),Tn都差了n倍或者2n,3n...
∵{an}与{bn}是等差数列∴Sn=[n(a1+an)]/2Tn=[n(b1+bn)]/2∴Sn/Tn=(a1+an)/(b1+bn)∵等差数列{an}与{bn}的前n项和的比为2n:(3n+1)∴
根据数列求和公式Sn=(a1+an)*n/2An/Bn=[(a1+an)*n/2]/[(b1+bn)*n/2]=(a1+an)/(b1+bn)由等差数列有a1+an=2*a[(1+n)/2]这里方括号
an=2*3^(n-1)bn=a(3n-1)=2*3^[(3n-1)-1]=2*3^(3n-2)
因为bn=3/(2n-1)(2n+1)=(3/2)[1/(2n-1)-1/(2n+1)]于是Sn=b1+b2+.+bn=(3/2)[1-1/3+1/3-1/5+1/5-1/7+.+1/(2n-1)-1