若a可逆证明a的k次方也可逆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:02:55
若a可逆证明a的k次方也可逆
线性代数...若A,B可逆,那么AB可逆?AA可逆?

对的.且有(AB)^-1=B^-1A^-1(A^2)^-1=(A^-1)^2

如果矩阵A可逆,证明A’(A的转置矩阵)也可逆.

A可逆,∴存在B使得AB=BA=I,(AB)'=B'A'=(BA)'=A'B'=I'=I,∴B'为A'的逆矩阵.

若矩阵A正定,证明A可逆并且A-1也正定

证明:因为矩阵A正定,所以A的所有顺序主子式都大于0,特别有|A|>0.故A可逆.又由A正定,所以A是对称矩阵,A'=A.所以(A^-1)'=(A')^-1=A^-1.故A是对称矩阵.再由A正定,存在

一道关于矩阵可逆性的证明题:n阶矩阵A,B和A+B都可逆,证明A^(-1)+B(-1)也可逆,并求其逆阵.

首先注意到A(A^{-1}+B^{-1})B=B+A,于是A^{-1}+B^{-1}=A^{-1}(A+B)B^{-1},从而有(A^{-1}+B^{-1})^{-1}=B(A+B)^{-1}A.

若n阶方阵A可逆,(1)证明A*也可逆,并求A*的逆矩阵(2)求detA*

首先我们要知道什么是方阵的代数余子式,这个你如果不知道,去查线性代数我们有:A(A*)=(A*)A=|A|I(1),I为单位矩阵因为|A|≠0,所以(A*)也可逆,并且有(A*)(A/|A|)=I故(

证明:若n阶方阵A的伴随矩阵A*可逆,则A可逆

【反证法】假设A不可逆,则|A|=0所A·A*=|A|·E=0因A*逆,等式两边右乘A*的逆,得A=A·A*·A*的逆=A·A*·A*的逆=0·A*的逆=0即有A=0进而有A*=0(根据伴随矩阵的意义

一道证明逆矩阵的题设A,B是N阶可逆矩阵,(A+B)也可逆,试证明 (A的逆+B的逆)也可逆 怎么证明啊~

Aˉ(A+B)Bˉ=(E+AˉB)Bˉ=Aˉ+Bˉ,因为Aˉ,(A+B),Bˉ都可逆,所以Aˉ+Bˉ可逆,且有(Aˉ+Bˉ)ˉ=[Aˉ(A+B)Bˉ]ˉ=B(A+B)ˉA.

证明:若A可逆,则A伴随矩阵的行列式等于A行列式的n-1次方

AA*=det(A)E则det(A)det(A*)=(det(A))^n故det(A*)=(det(A))^(n-1)

设矩阵A的K次方等于0矩阵,如何证明E-A可逆,并求E-A的逆

(E--A)(E+A+A^2+A^3+...+A^(n--1))=E+A+A^2+A^3+...+A^(n--1)--A--A^2--A^3--.--A^n=E--A^n=E,因此E-A可逆,且(E-

设A,B均为n阶方阵,E为单位矩阵,证明:若E-AB可逆,则E-BA也可逆,并求E-BA的逆

(E-AB)A=A-ABA=A(E-BA)=>A=(E-AB)^(-1)A(E-BA)E=E-BA+BA=E-BA+B(E-AB)^(-1)A(E-BA)=(E+B(E-AB)^(-1)A)(E-BA

证明(A*)'=(A')*,并且若矩阵A可逆,则A*也可逆A*是指A的伴随矩阵,A'是A的转置

由A*=|A|A^-1得(A*)'=|A|(A^-1)'对A'也有(A')*=|A'|(A')^-1=|A|(A')^-1而(A^-1)'=(A')^-1--这个也是性质,易证所以(A*)'=(A')

如果A可逆,试证:A*也可逆

是矩阵么?还是~矩阵的话:A可逆,所以|A|≠0,由AA*=|A|E得|A*|≠0,所以A*可逆再问:我给您多加15财富,麻烦给我详细解释一下“由AA*=|A|E得|A*|≠0”为什么?再答:因为AA

A可逆,证明伴随矩阵可逆!

A*=|A|A^-1|A*|=||A|A^-1|=|A|^n乘以|A^-1|=|A|^(n-1)因为A可逆,所以A的行列式不等于零所以|A|^(n-1)不等于0所以|A*|不等于0所以伴随矩阵可逆

线性代数问题设方阵A满足A的k次方幂等于零矩阵,k为正整数.证明I+A可逆,并求(I+A)的逆矩阵

因为(E+A)(E--A+A^2--A^3+.+(--1)^(k--1)A^(k--1))=E+(--1)^(k--1)A^k=E,第一个等号是你按照分配率乘开后发现中间的项全消掉了.因此E+A可逆,

设A为n阶矩阵 存在正整数k 使得A的k次方等于O 证明:A不可逆

根据|AB|=|A||B|得到|A^k|=|A|^k=0所以|A|=0,所以不可逆

证明:若方阵A可逆,则A的伴随矩阵A*也可逆.

n阶方阵A可逆,|A|≠0AA*=|A|EA*=|A|A^(-1)|A*|=|A|^(n-1)≠0A*可逆

大一线性代数 矩阵A可逆 则A的n次方也可逆吗 要理由

可逆(A^n)^-1=(A^-1)^nA^n*(A^n)^-1=(A*A^-1)^n=E^n=E

已知对给定的方阵A,存在正整数k使A的k次方等于0,试证E+A可逆

设a是A的特征值则a^k是A^k的特征值因为A^k=0,而零矩阵的特征值只能是0所以a^k=0所以a=0.故A的特征值为0,...,0所以A+E的特征值为1,...,1所以|A+E|=1故A+E可逆.

如果A,B是可逆矩阵,证明n阶方阵A,B的乘积AB也为可逆矩阵.

由(AB)(B^(-1)A^(-1))=A(B·B(-1))A^(-1)=AEA^(-1)=AA^-1=E这说明(AB)^-1=B^(-1)*A^(-1).

一道线性代数证明题若方阵A满足A的k次方=0,其中k为某个自然数,证明E-A可逆,且(E-BA)的-1次方=E+A+A平

A^k=0,E-A^k=E,展开,(E-A)*(E+A+A平方+A立方+...+A的k-1次方)=E.得证了赛.(后面是不是你打错了,B是咋个来的?)