若ax平方-x 1>0,在{-1,1}上恒成立
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:13:48
求根公式 再问:能给我说一下x1,x2等于多少吗再答:就是上面的式子,因为你题目刚好对应了这几个字母x1和x2就是上面的±号,变成+和-就是了
(1)依题意知x²+2x-3=0的两根分别为x1=﹣3、x2=1,即B(﹣3,0)、C(1,0),那么抛物线交点式为y=a(x-1)(x+3)=ax²+2ax-3a,即有b=2a,
1.函数y=f(x)通过(-2,0),f(-2)=4a-2b+c=02.函数与x轴交于-2,x1两点,与y正半轴相交,且交点x=0在-2,1之间,所以开口向下,a再问:2a+2b+2c>0和c=2b-
对称轴x=-1(x1+x2)/2=(1-a)/20
ax²+bx=0x1+x2=-b/ax1*x2=0(x1+x2)²=x1²+2x1*x2+x2²=x1²+x2²=b²/a
△=4(k+1)²-4(k²-1)≥0解得:k≥-1根据韦达定理x1+x2=-2(k+1)x1*x2=k²-1x1²+x2²=(x1+x2)²
由题意,f(x)有三个解,可必可以分解因式,即f(x)=x(x-1)(x-2)=x^3-3x^2+2xf'(x)=3x^2-6x+2令f'(x)=0,即3x^2-6x+2=0设两根为x1,x2,由韦达
x1+x2=1-a--->x1=1-a-x2f(x1)-f(x2)=a(x1²-x2²)+2a(x1-x2)+(4-4)=a(x1+x2)(x1-x2)+2a(x1-x2)=[a(
f(x)为偶函数x1+x2=0=>x1=-x2=>f(x1)=f(-x2)=f(x2)选B
f(x1)-f(x2)=ax1^2+2ax1+4-ax2^2-2ax2-4=a(x1^2-x2^2)+2a(x1-x2)=a(x1+x2)(x1-x2)+2a(x1-x2)=a(x1-x2)(x1+x
f(x)是二次函数,它的对称轴是x=-b/2af(x1)=f(x2)所以x1,x2关于x=-b/2a对称所以x1+x2=2*(-b/2a)=-b/af(x1+x2)=ab^2/a^2-b^2/a=0
x1+x2=-2ax1·x2=a²+4a-2x1²+x2²=(x1+x2)²-2x1x2=4a²-2(a²+4a-2)=2a²-8
用韦达定理就可以了啊|X1-X2|=(X1+X2)^2-4X1X2开根号即b^2/a^2-4c/a开根号(x1+x2)乘以0.5=-b/2a再问:都没有学过的就让我们写咯
由已知,ax1^2+bx1+c=ax2^2+bx2+c;即是a(x1^2-x2^2)=-b(x1-x2);所以有;x1+x2=-b/a;(由于x1-x2!=0);所以f((x1+x2)/2)=a((x
xx2,写成集合形式!
f(x1)=f(x2),所以x1x2关于对称轴对称,所以x1+x2=2x(-b/2a)=-b/a所以f(x1+x2)=f(-b/a)=c
f(x)=(x-a)^2-a²+5由图可知:要使f(x)在区间(0,2]上递减即对称轴a≥2要使|f(x1)-f(x2)|≤4即【f(x1)-f(x2)】max=4而f(x)min=f(a)
二次函数y=ax平方+bx+c(a不等于0)的顶点坐标(1,9),他的图像与x轴交点的横坐标是x1、x2,且x1的平方+x2的平方=20,所以-b/2a=1b+2a=0(1)(4ac-b^2)/4a=
f(x)是一个开口向上且对称轴在x正方向的抛物线,因此根据根与系数关系(韦达定理)得1