若an和bn平方都收敛,求an n也收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:06:46
若an和bn平方都收敛,求an n也收敛
数列{an}的前n项sn=10n-n的平方,又bn=绝对值{an},求{bn}的前n项和

Sn=-n^2+10*n是一个典型的等差前n项和公式即Sn=(d/2)n^2+(a1-d/2)n对应项系数相等,所以d=-2,a1=9所以an=9+(n-1)(-2)=-2n+11又bn=|an|=|

数列an满足a1+a2+a3+...+an=n^2,若bn=1/an(an+1),求bn的和sn

因为S(an)=a1+a2+...+an=n^2所以an=S(an)-S(a(n-1))=n^2-(n-1)^2=2n-1因此bn=1/ana(n+1)=1/(2n-1)(2n+1)=1/2*(1/(

等差数列{an},{bn}的前n项和分别为An,Bn,切An/Bn=2n/3n+1,求lim(n→∞)an/bn

An=[2n/(3n+1)]BnAn-1=[2n/(3n+1)]Bn-1lim(n→∞)an/bn=lim(n→∞)[An-An-1]/[Bn-Bn-1]=lim(n→∞)[2n/(3n+1)][Bn

若级数∑an^2和∑bn^2都收敛,求证:∑an的绝对值/n收敛

用比较判别法证明.经济数学团队帮你解答.请及时评价.

若级数an发散,级数(an+bn)收敛则级数bn为什么是发散的?

如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.

级数∑Bn,∑An-A(n-1)收敛,证明∑An*Bn收敛

∑An-A(n-1)=limAn-A1,所以An极限存在,极限存在的数列必有界设|An|≤M,那么由∑Bn收敛,可以知道∑An*Bn绝对收敛,因此该级数必然收敛

设数列an前n项和为Sn,且an+Sn=1,求an的通项公式 若数列bn满足b1=1且bn+1=bn+an,求数列bn通

1.n=1时,a1+S1=2a1=1a1=1/2n≥2时,Sn=1-anS(n-1)=1-a(n-1)Sn-S(n-1)=an=1-an-1+a(n-1)2an=a(n-1)an/a(n-1)=1/2

设等差数列{an}的前n项和为Sn,且Sn=((an+1)/2)平方(n属于正整数),若bn=(-1)^nSn,求数列{

n三次方求和是((n*(n+1))/2)的平方,但是(-n)的三次方肯定不是,再说这道题目也没有要求(-n)的三次方啊,^是表示指数pf---平方a1=((a1+1)/2)pf,所以a1=1,Sn=(

正项级数 an 收敛 bn小于等于an 则级数 bn 收敛 怎么证明?

这个是定理啊,大收敛推出小收敛,基本上不用证明.如果非要证也很简单,写一写定义就可以了.再问:老师问我们为什么--我该怎么说求解~再答:你是什么专业的?用e-N定理说一下就出来了。对任意e>0存在N,

an=2*3^n-1 若数列bn满足bn=an+(-1)^n*ln(an),求数列bn前n项和Sn

an=2*3^(n-1)bn=an+(-1)^n*ln(an)=2*3^(n-1)+(-1)^n*[ln2+(n-1)ln3]Sn=b1+b2+..+bn=(3^n-1)+(-1)^n*[nln2+(

函数收敛和发散问题!函数An收敛,Bn发散,那An*Bn的敛散性是什么啊?

不一定An=1/nBn=nAn*Bn收敛An=n/(n+1)Bn=n+2An*Bn发散

设数列an前n项和为sn,对任意正整数nh,都有an=5sn+1,记bn=(4+an)/(1-an),(1)求an与bn

(1)Sn-S(n-1)=5Sn+1所以Sn+1/5=-1/4[S(n-1)+1/5]Sn=(-1/4)^n-1/5an=(-1/4)^n由bn=(4+an)/(1-an),可得bn=[4^(n+1)

已知等差数列an=2n-1,若数列bn=an+q^an,求数列{bn}的前n项和Sn,求详解

再问:额那个倒M是什么玩意儿,我们解数列都不用那个的再答:求和符号你可以理解成从第一个数加到第n个数……难道你不是高中……?再问:以前高一高二没认真听,所以不知道这是啥意思再答:你不用知道就是个表示形

数列{an},a1=1,an=2-2Sn,求an,若bn=n*an,求{bn}的前n项和Tn

因为an=2-2Sn……(1)所以a(n-1)=2-2S(n-1)……(2)(1)-(2)得:an-a(n-1)=-2(Sn-S(n-1))即an-a(n-1)=-2an推出于an=(1/3)a(n-

已知等差数列an的通项公式为an=1+2n,令bn=an的平方-1,求bn的前n项和

答:等差数列An=1+2nBn=(An)^2-1=(An-1)(An+1)=2n(2n+2)=4n(n+1)=4n^2+4nSn=4*[(1^2+2^2+3^2+...n^2)+(1+2+3+...+

级数an与bn都发散,(an平方+bn平方)发散吗?

不一定发散再问:能具体解释下吗?不明白啊……求教再答:比如an=sin(nπ)bn=cos(nπ)然后不就有结论了吗?再问:sin(nπ)不是都等于0吗?那样an不就收敛了……sin(nπ)平方加上c

设An>0,级数An收敛,Bn=1-ln(1+An)/An,证明级数Bn收敛

再答:如果你认可我的回答,敬请及时采纳,在右上角点击“采纳回答”即可。再问:能不能再帮我解决几个问题?再问:再答:你发提问吧,我看到会解答的再问:第六题和第七题,很急啊,再答:傅里叶啊,计算量太大了再