若a 2 a²-4ab 4b²=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:00:36
若a 2 a²-4ab 4b²=0
求证 方程(m²+1)x²-2mx+(m²+4)=0没有实数根

解题思路:判别式的应用一元二次方程的根的问题解题过程:见附件有疑惑请回复讨论最终答案:略

怎样由直线y=kx+m 双曲线x²/a²+y²/b²=1 得到(b²-a²k²)x²-2a²kx-a²m²-a²b²=0

解题思路:先化简双曲线方程,再代入直线方程,化简求解,即可解题过程:

已知x,y满足√3x+4 +(Y-3)²=0 ,若axy-

解题思路:根据题意,由根式和绝对值的知识可求解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/inc

已知X²-5X+1=0,求X²+1/X²的值。

解题思路:本题考查有关式子的变形问题,注意完全平方公式的应用解题过程:

已知x²+9y²+4x-6y+5=0,求xy的值

解题思路:根据题意,由完全平方公式的知识可求解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/inc

(x²+y²)-2x+4x+5=0 求a+b的值

解题思路:根据完全平方公式配方,根据非负数的性质得出x,y,再计算和解题过程:应该是求x+y吧!解:

计算:1²-2²+3²-4²+…+2009²-2010²+2011²-2012²+2013²-2014²+2015².

解题思路:本题目主要利用平方差公式,难点在于找出规律,属于探究性问题。解题过程:

5a²-2ab-2a²-(4a²-2ab+b²)=

解题思路:先去括号,再合并同类项即可,注意去括号时符号的变化解题过程:

(4x+y)²+3(4x+y)-4=0,则4x+y值为( ) 变式1:(a²+b²)²-(a²+b²)-6=0,则a²+

解题思路:把原式的左边分解因式,进行求解           解题过程:(4x+y)²+3(4x+y)-4=0,则4x+y值为(-4或1)解:(4x+y)²+3(4x+y)-4=0,(4x+y+4)(

已知x²+y²-4x+6y+13=0,求x,y的值

解题思路:由完全平方公式、非负数的和等于0,可解。、解题过程:已知x²+y²-4x+6y+13=0,求x,y的值解:x²+y²-4x+6y+13=0x²-4x+4+y²+6y+9=0(x-2)²+(y

已知a²+b²+2a-4b+5=0,求2a²+4b-3的值

解题思路:根据已知条件的特点先求a,b的值完全平方公式的用法。解题过程:解:a²+b²+2a-4b+5=0,说明(a+1)^2+(b-2)^2=0即a+1=0b-2=0所以a=-1b=2所以2a²+4

若a、b为实数,且b=a2−1+1−a2a+7+4,则a+b的值为(  )

依题意有a2−1≥01−a2≥0,即a2-1=0,解得a=±1,所以b=4,a+b=3或5.故选C.

在△ABC中,若面积S=a²+b²-c²/4根3,则∠C=?

解题思路:本题给出三角形面积关于a2、b2、c2的关系式,求角C的大小.着重考查了三角形面积公式和利用正余弦定理解三角形等知识解题过程:

1.设集合A=【x²4+3y²4=1],B=[Y=X²】,则A∩B等于? 2.设全集U=R,集合A=【x²-x-30<0

解题思路:同学你好,本题目要注意集合的元素的属性,分清集合表示的是定义域还是值班域,再求交集解题过程:

化简a2a-1-a-1= ___ .

原式=a2a-1-(a+1)=a2a-1-(a+1)(a-1)a-1=a2-a2+1a-1=1a-1,故答案为:1a-1.

已知x²-4x+q=0可以配方成(x-p)²=7的形式,那么x²-4x+q=2可以配方成?A.(X-P)²=5B.(X-

解题思路:本题考查一元二次方程的配方过程,从配方过程的具体形式进行分析可得p与q的值。解题过程:解法一:比较两个方程x2-4x+q=0及x2-4x+q=2可发现第一个方程的右边加2得到第二个方程那么配

设数列{an}的前n项和为sn,且a1=1,sn=nan-2n(n-1)(n∈正整数)证明,证明1/a1a2+1/a2a

Sn=nan-2n(n-1)Sn=n(Sn-S(n-1))-2n(n-1)(n-1)Sn-nS(n-1)=2n(n-1)Sn/n-S(n-1)/(n-1)=2Sn/n-S1/1=2(n-1)Sn/n=

已知x²+9y²-4x+6y+5=0,求x²y³的值

解题思路:先利用完全平方公式求出x、y的值,再代入求出代数式的值。解题过程:

3²+4²=5²,5²+12²=13²,7²+24²=25²,9²+40²=41²,11²+60²=61²...

解题思路:根据等式的特点得出规律解题过程:解:(1)①这些式子每个都呈a2+b2=c2(a,b,c为正整数)的形式.②每个等式中a是奇数,b为偶数(实际上还是4的倍数),c奇数.③c=b+1.④各个式

若椭圆4分之X²=1与双曲线m分之x²-2分之m²有相同焦点

解题思路:椭圆解题过程:你好,椭圆方程没有写完整,请你写好以继续讨论的形式发上来,老师再给你解答。最终答案:略