若2A2 3A E=O,证明A可逆并求A^-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:44:03
若2A2 3A E=O,证明A可逆并求A^-1
设A是n阶方阵,且(A+E)的平方=O,证明A可逆

(A+E)的平方=OA²+2A+E=OA(A+2E)=-EA(-A-2E)=E所以有定义可知A可逆.

求解【线性代数】 设A是n阶矩阵, ⑴若A满足矩阵方程A²-A+I=O,证明:A和I-A都可逆,并

2题的解法一样 根据要证明可逆的矩阵凑积=单位矩阵的多项式 2题过程如下图: 

若矩阵A^2=A,证明:3E-A可逆

主要思路是利用条件A^2=A来制造3E-A与某个矩阵的积是单位矩阵.(3E-A)(E+A)=3E+3A-A-A^2=3E+A=6E-(3E-A)(3E-A)(2E+A)=6E(3E-A)[(2E+A)

设n阶矩阵A满足A^2+2A-3I=O,证明:A,A+2I都可逆,并求其逆.

A(A+2I)=3I|A(A+2I)|=|A||A+2I|=3所以|A|不等于0且|A+2I|不等于0所以A和A+2I都可逆

设A,B都是可逆方阵,试证明(O A; B O)可逆 怎么证,要绕晕了

设A是m阶可逆方阵,B是n阶可逆方阵,那么行列式OABO=(-1)^(m+n)*|A|*|B|A和B都可逆,所以行列式|A|和|B|都不等于0所以行列式OABO也不等于0,因此这个矩阵也是可逆的

【急】线性代数设n阶方阵A满足A^2-A+2E=O,证明A可逆,且求A^-1。请这题目的证明过程与答案,谢谢!

【分析】可逆定义:若n阶方阵A满足,AB=E,则称矩阵A可逆,B是A的逆矩阵。【解答】A²-A+2E=0,A(A-E)=-2E,A(E-A)/2=E,根据可逆定义,则A可逆,A-1=(E-A

n阶矩阵A满足A^m=O证明对任意实数k,E+kA为可逆矩阵

经济数学团队为你解答.再问:证明A特征值全为零和证明下一步E+kA特征值为1有什么关系吗?再答:有关系。若a是A的特征值,则1+ka是E+kA的特征值。

设n阶方阵A满足A2-5A+5E=O,证明矩阵A-2E可逆,并求其逆矩阵

A²-5A+6E=E(A-2E)(A-3E)=E所以A-2E可逆其逆矩阵为A-3E再问:(A-2E)(A-3E)=A²-5AE+6E^2。不等于A²-5A+6E=E再答:

设n阶方阵A满足A2-5A+5E=O,证明矩阵A-2E可逆,并求其逆矩阵.

A2-5A+5E=A2-5A+6E-E=(A-2E)(A-3E)-E=O(A-2E)(A-3E)=E矩阵A-2E可逆,其逆矩阵=A-3E

线性代数:方阵题方阵A满足AA-A-2E=O,证明A及A+2E都可逆.并求它们的逆.

题目说明A(A-E)=2E所以A可逆,其逆为(A-E)/2又(A+2E)(A-3E)=-4E所以A+2E可逆,其逆为(3E-A)/4

若n阶矩阵A满足A^2+2A+2E=O,证明:A+xE(其中x为任意实数)可逆,并求其逆矩阵的表达式.

A^2+2A+2E=OA(A+xE)+(2-x)A+(2-x)xE-(2-x)xE+2E=0(A+xE)[A+(2-x)E]=-(2-2x+x^2)E-(A+xE)[A+(2-x)E]/(2-2x+x

若A满足A^2-2A-4E=0,证明A+E与A-3E都可逆,且互为逆矩阵,若A满足A^2+2A+3E=0,证明A是可逆矩

(1)由(A+E)(A-3E)=A²-2A-3E=(A²-2A-4E)+E=0+E=E有A+E与A-3E都可逆,且互为逆矩阵(2)由A^2+2A+3E=0,有A(A+2E)=-3E

A为n阶方阵,A^2+A-4E=O,证明A与A-E都是可逆矩阵,并写出A^-1及(A-E)^-1

A^2+A-4E=OA^2+A=4EA(A+E)=4EA(A+E)/4=E因此,A可逆,且A^-1=(A+E)/4A^2+A-4E=OA^2+A-2E=2E(A-E)(A+2E)=2E(A-E)(A+

设方阵A满足 A²-A-2E=O 证明A可逆 并求A的逆矩阵.

因为A^2-A-2E=0所以A(A-E)=2E所以A可逆,且A^-1=(1/2)(A-E)再问:额。。。没了??求不出A的逆矩阵的值吗再答:这样就可以了再问:那A+2E的逆矩阵再答:因为A^2-A-2

设方阵A满足A^2-A-2E=O证明:A与E-A都可逆,并求他们的逆矩阵

再问:第三行等号左边那个E是1吧。?再答:是E再答:单位矩阵再答:再问:嗯嗯不过还是有点不明白A的逆矩阵和E-A的逆矩阵怎么求的。图上是全部的步骤了么?谢谢(^_^)再答:第三步只是把2除了过去,已经

设方阵A满足 A-A-2E=O 证明A可逆 并求A的逆矩阵.

A2-A-2E=0A(A-E)=2EA[(A-E)/2]=E所以由书上定理,得A可逆且A的逆矩阵=(A-E)/2

n阶矩阵A满足A^m=O证明对任意实数k,E+kA为可逆矩阵.

因为A^m=O,即A为幂零矩阵,所以A的特征值只有0,从而对任意实数k,E+kA的特征值只能是1,|E+kA|等于其所有特征值的乘积,故不为0,所以E+kA为可逆矩阵.

矩阵A满足A^2+5A-4E=O,证明A-3E可逆,并求其逆.

(A-3E)(A+8E)+20E=A^2+5A-4E=O所以(A-3E)(A+8E)=-20E所以|A-3E||A+8E|=|-20E|≠0所以|A-3E|≠0所以A-3E可逆由于(A-3E)(A+8

设方阵A满足A^2 -A-2I=O,证明A为可逆矩阵,并求A^-1

A^2-A-2I=OA(A-I)=2I所以A可逆A^-1=1/2(A-I)