若1 2不是方阵A的特征值,则E-2A是不是可逆方阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 04:53:40
若1 2不是方阵A的特征值,则E-2A是不是可逆方阵
设3阶方阵A的特征值为-1 2 -3,则A‘的特征值为

A*=A的行列式乘以A的逆=(-1乘以2乘以-3)乘以A的逆=6倍的A逆3阶方阵A的特征值为-12-3,A逆的特征值为-1,1/2,-1/3,所以A*的特征值为-6,3,-2

设3阶方阵A的特征值是1,0,2,则(A+2E)的绝对值等于多少,

A的特征值是1,0,2则A+2E的特征值是(λ+2):3,2,4所以|A+2E|=3*2*4=24再问:谢了

设三阶方阵,A与B相似,A的特征值为2,3,4,则|B-E|等于多少?

首先相似则特征值全部相同(等价秩相同合同正负惯性指数相同)则b的特征值为234b-e的特征值为123则|b-e|=6

能不能这样算,很简便,线性代数,特征值2对应两个特征向量,由R+无关向量数等于方阵阶数,则A-λE的方阵

可以啊!由A的标准形知,2是A的二重特征值,故A的属于特征值2的线性无关的特征向量有2个所以r(A-2E)=2由此推出a=-2

设三阶方阵A的特征值为-1,-2,-3 求A*,A²+3A+E

求特征值么?A*特征值=|A|/A特征值,6、2、3A^2+3A+E的特征值为A特征值带入所得值-1,-1,1

已知3阶方阵A的特征值为-1 2 3 ,方阵B与A相似则|B^-1+B-E|=?

相似矩阵有相同的特征值,所以B的特征值是-1,2,3B可逆,若B的特征值是λ,则B^-1的特征值是λ^-1而B^-1+B-E的特征值是(λ^-1)+λ-1所以B^-1+B-E的特征值是-3,3/2,7

设A可逆,方阵的特征值为λ,E-A^(-1)的特征值是多少

若λ是A的特征值,且A可逆则1/λ是A^-1的特征值(定理)所以1-1/λ是E-A^-1的特征值再问:为什么1-1/λ是E-A^-1的特征值呢?再答:E-A^-1是A^-1的多项式有定理:f(λ)是f

若3阶方阵A与B相似,A的特征值为1,-1,2,则(B*)^-1-2E的特征值是

AB相似,则AB有相同特征值B也有特征值1-12则|B|=1*(-1)*2=-2则B*对应特征值是-2/1=-2-2/-1=2-2/2=-1则(B*)^-1对应特征值是1/-2=-1/21/21/-1

设四阶方阵A与B相似,A的特征值为2 3 4 5.则/B-E/=

相似则特征值相同所以B的特征值是2,3,4,5所以B-E的特征值是(λ-1):1,2,3,4所以|B-E|=1*2*3*4=24.

已知3阶方阵A的特征值为1,2,3,则A^(-1)的特征值为 ,A*的特征值为 ,A²+3A+5E的特征值

A^(-1)的特征值为1/λ:1,1/2,1/3.|A|=1*2*3=6.A*的特征值为|A|/λ:6,3,2设f(x)=x²+3x+5则A²+3A+5E的特征值为f(λ):9,1

设n阶方阵A满足A^2+2A-3E=0证明A+4E的特征值都不是零.

因为A^2+2A-3E=0所以如果m_A(x)是矩阵A的最小多项式,定有m_A(x)|(x^2+2x-3)所以A得特征值只可能是x^2+2x-3的根1或者-3.所以|A+4E|≠0即A+4E的特征值都

设三阶方阵A的三个特征值为1,2,3,则A+E的行列式=?

您好!A的三个特征向量互不相同,所以A可对角化,存在可逆矩阵P使得A=P*diag{1,2,3}*P^(-1).所以A+E=P*diag{1,2,3}*P^(-1)+P*P^(-1)=P*(diag{

设四阶方阵A的特征值为1/2,1/3,1/4,1/5,则|A^-1-E|=?

A^-1-E的特征值为(1/λ-1):1,2,3,4所以所求行列式等于1*2*3*4=24.再问:嘿嘿,谢谢

设3阶方阵A的3个特征值为1 2 3则|2A²+3E|等于

/>设f(x)=2x²+3则f(1)=5,f(2)=11,f(3)=21.因为A的特征值是1,2,3所以A²+3E的特征值为5,11,21所以|A²+3E|=5×11×2

若3阶方阵A的特征值为-1,0,1,则矩阵B=A³-A+2E的相似对角矩阵为?

B的特征值,2,2,2再答:所以B的相似为diag(2,2,2)再问:B的特征值怎么算再答:带进去啊再答:A的特征值带入A

3阶方阵A的特征值为1,-1,2,则|A^2-2E|=

由特征值的定义有Aα=λα,α≠0(λ为特征值,α为特征向量)则有A^2α=A(λα)=λAα=λ^2α即有(A^2-2E)α=(λ^2-2)α也就是说如λ是A的特征值,那么λ^2-2就是A^2-2E

已知三阶方阵A有特征值-1,1,2,那么A+E的特征值是0,2,3吗

是的方阵特征值为xA+aE的特征值是x+a

三阶方阵A的特征值是1,2,-3,A*是A的伴随矩阵,则|A*+E|=

A逆=1/\A\A*A*=\A\A逆\A\=1×2×(-3)=-6A*的特征值分别为-6÷1=-6,-6÷2=-3,-6÷(-3)=2所以A*+E的特征值为-6+1=-5,-3+1=-2,2+1=3从