max=2x1-2x2 x3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:31:44
选做部分在下列四个核反应方程中,x1、x2、x3和x4各代表某种粒子①13H+x1→24He+01n②714N+24He→817O+x2③49Be+24He→612C+x3④1224M
因为x1,x2,x3是原方程的三个根,所以,原方程可写作:(x-x1)(x-x2)(x-x3)=0解开得:x^3-(x1+x2+x3)x^2+(x1x2+x2x3+x1x3)x-x1x2x3=0而原等
A=011101110A+E=111111111-->111000000对应方程x1+x2+x3=0(1,-1,0)^T显然是一个解与它正交的解有形式(1,1,x)^T代入方程x1+x2+x3=0确定
A=1-22-2-24240嗯,特征值好麻烦-6074/97723143/977估计题目有误.
f=x1^2-x2x3=x1^2-(1/4)(x2+x3)^2+(1/4)(x2-x3)^2所以规范性是y1^2+y2^2-y3^2或者计算矩阵[100;00-1/2;0-1/20]的特征根,有两个正
max=x1^2-x2;x1^2+x2^2再问:用LINGO软件求解非线性规划:minsinx+e^x+cosxs.t.-Π
f=(x1-2x2+2x3)^2-6x2^2-6x3^2+16x2x3=(x1-2x2+2x3)^2-6(x2-4/3x3)^2+(14/3)x3^2令(y1,y2,y3)'=(x1-2x2+2x3,
max=3*x1*x1-x1^3+5*x2*x2-x2^3;x1+2*x2再问:动态规划问题擅长不?再答:不擅长
(1)A=11010-10-11(2)|A-λE|=1-λ101-λ-10-11-λc1+c31-λ100-λ-11-λ-11-λr3-r11-λ100-λ-10-21-λ=(1-λ)[-λ(1-λ)
由已知,f的矩阵A=20000101a与B=2000b000-1相似所以2+a=2+b-1且|A|=-2=|B|=-2b所以b=1,a=0.且A=200001010的特征值为2,1,-1(A-2E)x
才2个未知数,图解法自己画图.单纯形:标准型:maxz=2X1+X2+0X3+0X4ST:3X1+5X2+X3=156X1+2X2+X4=24Cj→2100Cb基bX1X2X3X40X31535100
令x1=y1+y2,x2=y1-y2,x3=y3则f=2(y1+y2)(y1-y2)+2(y1+y2)y3-6(y1-y2)y3=2y1^2-4y3y1-2y2^2+8y3y2=2(y1-y3)^2-
应该是(x1^2)+2(x2^2)+3(x3^2)+4(x1x2)-4(x2x3)=(x1^2)+2(x2^2)+3(x3^2)+2(x1x2)-2(x2x3)+2(x2x1)-2(x3x2)所以A=
x1x2+x3x4≥2√(729/x5)即取定一个x5后,x1x2,x3x4不会都小于√(729/x5)x2x3+x4x5≥2√(792/x1)√(729/x5)+√(792/x1)≥2√(729*7
x1x2+x2x3+````+xn-1xn≤((n-1)/n)(x1^2+x2^2+````+xn^2)当且仅当n=2时不等式成立,证明:n=2时,不等式等价于(x1-x2)^2/2≥0成立.n≥3时
二次型的矩阵A=200032023|A-λE|=2-λ0003-λ2023-λ=(2-λ)[(3-λ)^2-2^2]=(1-λ)(2-λ)(5-λ).所以A的特征值为1,2,5.A-E=1000220
二次型的矩阵A=1-11-14-11-10构造矩阵(上下两块)AE=1-11-14-11-10100010001c2+c1,c3-c1(同时实施相应的初等行变换)10003000-111-101000
f(x1,x2,x3)=2x1x2+2x1x3+2x2x3对应的实对称矩阵为A=[(0,1,1)T,(1,0,1)T,(1,1,0)T];下面将其对角化:先求A的特征值,由|kE-A|=|(k,-1,
二次型的矩阵A=200032023|A-λE|=2-λ0003-λ2023-λ=(2-λ)[(3-λ)^2-2^2]=(1-λ)(2-λ)(5-λ).所以A的特征值为1,2,5.(A-E)X=0的基础
二次型的矩阵A=200002023|A-λE|=2-λ000-λ2023-λ=-(λ-2)(λ-4)(λ+1)特征值为λ1=2,λ1=4,λ1=-1A-2E=0000-22021-->00000101