matlab线性回归方程函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:09:09
这下通了,都是小问题:x1=[100101.9108.2104.01102.6103.6];x2=[174162.6233.8257322.4373.1];y=[88.9283.791.13127.2
化成y-A=a(x-B)^2,t=(x-B)^2
x=[100101.9108.2104.01102.6103.6];y=[174162.6233.8257322.4373.1];z=[88.9283.791.13127.24141.11150.37
你可以可以这样,先画好图获得基本的线条信息,然后采集那条线的点进行线性回归获得方程.比如在你这个图像中明显可以看出5条线段,采集这五条线段的点坐标(横坐标,纵坐标)集合,分别记为(X1,Y1),(X2
公式:
用polyfit函数;k=polyfit(x,y,1);A=k(1);B=k(2);再问:能把整个的写出来么不会用的着急啦再答:x=[-0.125,-0.300,-0.602,-0.824];y=[-
所谓线性回归模型就是指因变量和自变量之间的关系是直线型的. 回归分析预测法中最简单和最常用的是线性回归预测法. 回归分析是对客观事物数量依存关系的分析.是数理统计中的一个常用的方法.是处理多个变量
可以不用拟合工具箱,直接用矩阵除法即可!因为为线性求a1,a2即把a1,a2当成未知数,x1,x2,Y-a0当成已知量则x1*a1+x2*a2=Y-a0,即[x1,x2]*[a1;a2]=Y-a0令矩
你x10个值,y11个值,而且591.0也有误吧r=corrcoef(x,y);%r就是相关系数R=r^2;k=polyfit(x,y,1);scatter(x,y,'.');holdonx1=200
在MATLAB里,多项式由一个系数的行向量表示,其系数是按降序排列.所以:A=-0.2444B=0.6064
答:求和符号"∑".符号"∑"读作"西格玛",常用作求和,"∑"(∑上面有一个n,下面有一个i=1,右面有一个ai)读作"西格玛ai从i=1到i=n","∑"(∑上面有一个n,下面有一个i=1,右面有
x=[2.82,2.02,1.57,1.28,1.08,0.94];z=[40,55.9,62.8,66.2,68.7,70.6];Z=z';X1=[x;x]';%c=ax-bx+zz=c-ax+bx
y=[320320160710320320320160710320];x1=[2.31.71.31.71.71.611.71.71.7];x2=[2.31.71.71.61.71.711.71.71.
y=[320320160710320320320160710320];x1=[2.31.71.31.71.71.611.71.71.7];x2=[2.31.71.71.61.71.711.71.71.
首先你的X和Y两个矩阵的维数不一样,这样的话算出来的结果就可能有问题.第二假如一组数据的值就是这样的话,你就算用其他的软件去求还是这样,其实要检验b的取值是否合理其实有个办法很简单,就是你可以用上面已
a=[320320160710320320320];f=[0.180.180.180.180.090.360.18];v=[2.31.71.71.71.71.71];F=[38.829.2326.53
http://hi.baidu.com/zhangkai1201/blog/item/c2bf22039bf73983d53f7c64.html
步骤: 1.列计算表,求∑x,∑xx,∑y,∑yy,∑xy. 2.计算Lxx,Lyy,Lxy Lxx=∑(x-xˇ)(x-xˇ) Lyy=∑(y-yˇ)(y-yˇ) Lxy=∑(x-xˇ)(
是依据误差的平方和最小这个条件来求回归系数的.比如一元的,y=ax+bE=∑(y-yi)^2=∑(axi+b-yi)^2将a,b看成变量,则E的最小值需有其偏导数为0,即E'a=2∑(axi+b-yi
我们以一简单数据组来说明什么是线性回归.假设有一组数据型态为y=y(x),其中x={0,1,2,3,4,5},y={0,20,60,68,77,110}如果我们要以一个最简单的方程式来近似这组数据,则