matlab算向量的正交基
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:14:14
两个正交矩阵的乘积仍是正交矩阵,正交矩阵的逆仍是正交矩阵.一个n阶矩阵的A行(列)向量可以构成Rn的标准正交基的充要条件是A是正交矩阵.具体的说明,你自己补全下.
正交向量组A乘以的逆矩阵等于单位矩阵应该是:正交矩阵A乘以它的逆矩阵等于单位矩阵!那么正交向量组那?设所考虑的是n维向量.正交向量组所含向量个数≤n(>n,必相关,而正交组是无关的),如果正交向量组所
AB为两向量数量积:dot(A,B)向量积:cross(A,B)夹角:acos(dot(A,B)/(norm(A)*norm(B)))%弧度制,转角度制乘180/pi模:norm(A)norm(B)
行列式|X1,X2,...,Xn|0则线性无关,用斯密特正交化公式算标准正交基.注:Maple有函数GramSchmidt(,normalized)求标准正交基.再问:用matlab怎么编写函数啊?再
a=[1,3,5];b=[3,6,2];if(a*b'==0)%判断内积是否为0disp('yes');elsedisp('no');end结果:no
第一题答案是AAx=0的解一定是ATAx=0的解ATAx=0->xTATAx=0(Ax)TAx=0因为A是实矩阵所以Ax=0所以同解第二题|A|=1或者-1因为ATA=E->|A|=1or-1
变换结果是不一样的.施密特正交化是依赖于基的,如果你把施密特变换写成矩阵形式就可以看出来,设A为变换矩阵:Y=AX,Y=BP-1PX.A不等于B的.因为B的内积是在PX变换后计算的.你再将PX变换回来
解题思路:考查空间向量的运算解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/rea
做n次就得到的n阶的矩阵,那么就可以划成圆了.
你好A是正交矩阵A^TA=E(定义)A的行(列)向量两两正交且是单位向量(定理)将A按列分块为A=(a1,...,an)由A^TA=E得ai^Taj=1(i=j),0(i≠j)所以列向量ai是单位向量
fliplr(a)
例子如下:>>s=[1,1,0;0,1,1;1,0,1]s=110011101>>[Q,R]=qr(s)Q=-0.7071-0.4082-0.57740-0.81650.5774-0.70710.40
思路:利用正交性,将问题转化为:1.求解一个齐次线性方程组的基础解系;2.然后再将该基础解系与α1一起构成向量组;3.最后再正交化.设x=(x1,x2,x3)与α1正交,则,x1+2x2+3x3=0解
从B*B^T=E可以推出B^T*B=E,但理由不是取转置,所以可以认为这个证明是错的.再问:那怎么推的啊。。我觉得推不出来啊再答:这是一个基本结论,一般教材上都有,也可以去下面的链接看http://z
好像这是一开始定义正交矩阵时就这么规定的,我个人也认为单位向量是不必要的,但是现在统一都要单位
坐标是相对于基的一个概念,给定线性空间空间的基之后就可以讨论坐标,这组基未必要是正交的正交基是内积空间里特殊的基,如果没有内积的话根本谈不上正交基,但是一般的线性空间里并没有内积的概念,照样可以讨论基
对.这是正交矩阵的一个充要条件
简单的说就是对于一个矩阵A,A×A′=I,A'是A的共轭矩阵,I为单位举证,共轭就是把虚部前面的正负号颠倒.